
Agilent Technologies

Enterprise Link

Developer’s Guide
Part No. E2700-90020

For use with Enterprise Link release E.02.30

for Windows NT 4.0

Printed in USA March 2000

Notices

The information contained in this manual is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this

manual, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose. Agilent Technologies

shall not be liable for errors contained herein or direct, indirect, special,

incidental, or consequential damages in connection with the furnishing,

performance, or use of the material.

TRADEMARKS

Adobe® is a trademark of Adobe Systems Incorporated which may be

registered in certain jurisdictions.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32

and 64-bit configurations) on all HP 9000 computers are Open Group UNIX 95

branded products.

UNIX® is a registered trademark in the United States and other countries,

licensed exclusively through X/Open Company Limited.

Windows®, MS Windows®, Windows NT® are U.S. registered trademarks of

Microsoft Corporation.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical

Data and Computer Software clause in DFARS 252.227-7013.

Agilent Technologies, Inc.

395 Page Mill Road

Palo Alto, CA

94303-0870, USA

Rights for non-DOD U.S. Government Departments and Agencies are as set

forth in FAR 52.227-19(c)(1,2).

Copyright 1996-1997, 1999-2000 Agilent Technologies Canada Inc.

This document contains proprietary information which is protected by

copyright. All rights are reserved. No part of this document may be

photocopied, reproduced, or translated to another language without the prior

written consent of Agilent Technologies Canada Inc.

Enterprise Link Documentation Set

The Enterprise Link documentation set includes four books.

HP-UX Installation Guide

Describes installing Enterprise Link on the HP-UX operating system. You

can view this book online using Adobe®Acrobat Reader.

Windows NT Installation Guide

Describes installing Enterprise Link on the Windows NT operating

system. You can view this book online using AdobeAcrobat Reader.

User’s Guide

Describes Enterprise Link and provides step-by-step procedures for using

Enterprise Link. You can view this guide online using Adobe Acrobat

Reader, or order a preprinted copy.

Developer’s Guide

Describes how to extend Enterprise Link to communicate with other

systems. You can view this guide online using Adobe Acrobat Reader, or

order a preprinted copy.
i

In This Book

This book describes how to extend the Enterprise Link product to

communicate with new kinds of applications.

• Chapter 1 presents an overview of Enterprise Link’s data server and

configuration tool. In addition, this chapter provides conceptual

information needed to extend this product.

• Chapter 2 describes how to build a version of the Enterprise Link Tcl

interpreter, as well as the behavior of the build script.

• Chapter 3 describes how to develop a communication object for the data

server.

• Chapter 4 describes how to develop a communication object for the

configuration tool, including developing the interface class.

• Chapter 5 describes how to develop the optional system-specific Access

window for the configuration tool.

• Chapter 6 describes how to develop the optional system-specific Trigger

panel for the configuration tool.

• Chapter 7 documents the communication classes for the data server,

configuration tool, and spooler.

• Chapter 8 documents utilities that simplify developing the

communication objects for the data server and configuration tool.
ii

Contents
1 Concepts

Configuration Tool Overview.. 1-8

Data Server Overview... 1-13

Configuration Tool/Data Server Interface 1-17

Tcl/C API Interface ... 1-18

Tcl Communication Class Concepts 1-21

2 Building a Tcl Interpreter

Building a Tcl Interpreter on HP-UX Systems............... 2-4

Building a Tcl Interpreter on Windows NT™ Systems 2-5

The Build Script .. 2-6

3 Developing the Data Server

Communication Object

Developing the supports Method.................................... 3-9

Developing the selectionProcedures Method 3-10

Developing the constructor Method............................. 3-14

Developing the destructor Method............................... 3-15

Developing the list2path Method.................................. 3-16

Developing the path2list Method.................................. 3-17

Developing the options Method.................................... 3-18

Developing the consumeOptions Method.................... 3-19

Developing the usage Method 3-20

Developing the open Method .. 3-21

Developing the setTrigger and run Methods 3-23

Developing the getChildren Method............................. 3-25

Developing the read Method ... 3-26
Contents-1

Contents
Developing the write Method .. 3-29

Developing the commit Method.................................... 3-31

Developing the rollBack Method 3-32

Developing the Object_getSpoolPaths Procedure...... 3-33

4 Developing the Configuration Tool

Communication Object

Developing the Interface Object 4-6

Developing the supports Method.................................. 4-10

Developing the list2path Method.................................. 4-12

Developing the path2list Method.................................. 4-13

Developing the options Method.................................... 4-14

Developing the consumeOptions Method.................... 4-15

Developing the usage Method 4-16

Developing the open Method .. 4-17

Developing the loadNameSpace Method..................... 4-18

Developing the abortNameSpaceLoad Method 4-20

Developing the getChildren Method............................. 4-21

Developing the selectionProcedures Method 4-22

Creating a Message Catalog File 4-26

5 Developing an Access Window

Developing the yourIntfAccessCfgReset Procedure 5-8

Developing the yourIntfAccessCfgLoad Procedure 5-9

Developing the yourIntfAccessCfgSave Procedure.... 5-11

Developing the yourIntfAccessCfgPrint Procedure ... 5-13

Developing the yourIntfAccessGui Procedure............ 5-15

Developing the yourIntfAccessApplyHan Procedure 5-19

Developing the yourIntfAccessAppObj-

NameVHan Procedure.. 5-21
Contents-2

Contents
6 Developing a Trigger Panel

Developing the yourIntfTrigCfgReset Procedure 6-10

Developing the yourIntfTrigCfgPrint Procedure 6-11

Developing the yourIntfTrigGetFocus Procedure 6-13

Developing the yourIntfTrigCreatePanel Procedure.. 6-14

Developing the yourIntfTrigPackPanel Procedure 6-17

Developing the yourIntfTrigIsEnabled Procedure 6-19

Developing the yourIntfTrigEscapeKHan Procedure 6-20

Developing the yourIntfTrigApplyHan Procedure...... 6-22

Developing the yourIntfTrigSync Procedure 6-24

7 Class Reference

Return Values .. 7-3

elCommClass... 7-5

elFIFOSpoolerClass.. 7-21

elLinkClass... 7-25

elRASpoolerClass ... 7-30

elSpoolerClass... 7-34

yourIntfClass ... 7-36

8 Utility Reference

Index

About this Edition
Contents-3

Contents
Need Assistance?
Contents-4

1

1 Concepts

Concepts
Agilent Technolgies’ Enterprise Link can connect two distinct software

systems. Enterprise Link comes ready-configured to link RTAP and SAP;

however, you can extend Enterprise Link’s capabilities to include other

systems. This book describes how to extend Enterprise Link to communicate

with new systems. This chapter provides conceptual information you should

read before extending Enterprise Link.

Enterprise Link includes a graphical user interface component (the

configuration tool) and a run-time component (the data server).

To extend Enterprise Link to communicate with new systems, you have to

write new communication classes for the data server (elserver) and

configuration tool (elconfig). This process usually involves three activities:

1. Extend the Tcl interpreter, usually with C code, so that it can manipulate

the required parts of the new system’s API (see “Tcl/C API Interface” on

page 1-18).

2. Write a new communication class for the data server in Tcl, deriving the

class from the elCommClass base class. The base class is located in

$ELROOT/lib/elink/elserver_link.tcl on HP-UX systems, and in

%ELROOT%\lib\elink\elserver_link.tcl on Windows NT systems (see chapter 3,

“Developing the Data Server Communication Object”).

3. Write a new communication class for the configuration tool (see

chapter 4, “Developing the Configuration Tool Communication Object”).

Caution Much of Enterprise Link is shipped in source-code form as Tcl scripts. The

contents of these Tcl scripts may change radically from one release of

Enterprise Link to the next. Base your code on the functionality documented

in this book, not on anything you see in the Tcl scripts.
1-2

Concepts
The Enterprise Link configuration tool allows the end user to define and

modify a system’s configuration information. The end user can define what

data to transfer, how to transform the data values, where to transfer the data,

and when to transfer the data. The configuration tool stores this

configuration information in a configuration repository.

The Enterprise Link data server retrieves the configuration information from

the configuration repository, then transfers the data between systems

according to the configuration information:

Graphics
Console

Enterprise Link
Configuration Tool

Configuration
Repository

System 1
Enterprise Link Data

Server
System 2

Run-Time
Repository
1-3

Concepts
Data Transfer

The Enterprise Link configuration tool allows the end user to define where a

single unit of data comes from in one system (the source system), how the

data is transformed, and where it is written to in a second system (the

destination system).

Where a single unit of data comes from in one system (the source address),

how it is transformed, and where it is written to in a second system (the

destination address) is called a mapping:

A mapping can define data transfer and transformation either for a single unit

of data or for a set of dynamically configured sources and destinations. Both

kinds of mappings are often organized into groups the configuration tool’s

user interface calls methods. This book refers to these methods as configured

methods.

Note This book uses the term method in the usual object-oriented sense as applied

to Tcl; namely, an action or function associated with an [incr Tcl] class that

acts on an instance of the class.

A configured method contains not only mappings but also the configuration

information that defines when to transfer the data. This configuration

information is called a configured method’s trigger criteria. Therefore, a

configured method can be defined as one or more mappings that specify

System 1 System 2
(source) (destination)

Data
Transformation

{source address} {destination address}{transformation}

Configured Method

{source address 1} {destination address 1}{transformation 1}

{source address 2} {destination address 2}

{source address 3} {destination address 3}

{source address 4} {destination address 4}

{source address 5} {destination address 5}

{transformation 2}

{transformation 3}

{transformation 4}

{transformation 5}
1-4

Concepts
what to transfer and where to transfer it, and one or more trigger criteria that

specify when to transfer the data.

Just as mappings are grouped into configured methods, configured methods

are organized into larger entities called configured objects.

The configuration tool creates these objects and the data server animates

them. The configuration tool deals with only one configured object at any

given time, while the data server animates configured objects one at a time.

{source address 1} {destination address 1}{transformation 1}

{source address 2} {destination address 2}{transformation 2}

{source address 3} {destination address 3}{transformation 3}

{source address 4} {destination address 4}{transformation 4}

{source address 5} {destination address 5}{transformation 5}

Trigger Criteria: “when some condition is satisfied.”

Mappings:

Configured Object

Configured Method 1

Configured Method 2

Configured Method 3

Configured Method 4

Configured Method 5
1-5

Concepts
Configured Objects

A configured object contains files and directories. The base directory is

named after the configured object. This directory can be located anywhere in

the file system, just as long as the configuration tool and data server have

access to it.

• The run directory stores spooled data and state information that the data

server needs at run time. The data server automatically creates the run

directory the first time the directory is needed.

• The config directory contains the object’s configuration files. The

configuration tool automatically creates the config directory when the

object is created. The data in each configuration file is stored in the form

of a Tcl script. This makes it easy for the configuration tool and data

server to load the data.

• The names of configuration files reflect what they contain. For example, a

configuration file named errorlog.cfg contains configuration data that

describes where the data server should log error messages. Configuration

files containing mapping configuration data have the same name as their

configured method but with a .map suffix. Configuration files containing

trigger configuration data have the same name as their configured method

but with a .trig suffix.

Some characters are permitted in configured method names but not in file

names. The utlFnameToStr and utlStrToFname utilities can decode and

encode configured method names that contain these special characters. For

information about these utilities, see “utlFnameToStr” on page 8-38 and

“utlStrToFname” on page 8-70.

The following example shows a generic layout of a configuration file. This

configuration file assumes that the configuration data consists of two

variables: <what>_variable_one and <what>_variable_two.
1-6

Concepts
Example 1: # Enterprise Link <what> Configuration File
2:
3: if {![info exists _prefix]} {set _prefix “<what>_”}
4:
5: set ${_prefix}variables “${_prefix}config_rev \

${_prefix}variable_one ${_prefix}variable_two”
6:
7: set ${_prefix}config_rev 1
8: set ${_prefix}variable_one <value one>
9: set ${_prefix}variable_two <value two>
10:
11: # EOF

The lines in actual configuration files are not numbered. The line numbers

were added to this configuration file to make it easier to explain each line.

• The first line is a comment that identifies what the file contains.

• The third line specifies a prefix to add to every variable name in the file.

The existence of this prefix allows Tcl programs to avoid name collisions

when loading multiple configuration files.

• The fifth line creates a variable containing a list of all the Tcl

configuration data variables that sourcing this file will create. This

variable is always named <what>_variables. Tcl programs that read

configuration files may use or ignore this variable.

• The seventh line creates a variable containing a number that identifies the

file format used for the configuration data. This variable is saved

whenever Tcl programs write to the file and checked whenever Tcl

programs read the file. The following file format changes cause this

revision number to increment:

• adding new configuration data

• deleting existing configuration data

• entering new possible values for variables that can store

enumerated types

• The eighth and ninth lines create two configuration variables.

Configuration files may contain one or more such entries.

• The eleventh line contains a comment to indicate the end of file. This line

is useful for detecting truncated configuration files.
1-7

Concepts

Configuration Tool Overview
Configuration Tool Overview

The following diagram shows the high-level architecture for the Enterprise

Link configuration tool.

The Enterprise Link configuration tool is composed of three important

pieces:

1. A core component that implements all of the configuration tool’s generic,

system-independent functionality.

2. Two communication objects, each crafted specifically for a system such

as Agilent Technolgies’ RTAP product or SAP’s R/3 product. These

communication objects allow the configuration tool to display a

customized user interface to the end user. The configuration tool must be

provided with two such communication objects: one for each of the two

systems that will be exchanging data.

Note The NULL Communication Object is a simple communication object that

allows you to run the Enterprise Link configuration tool (elconfig) and the

Enterprise Link data server (elserver) when you have only one complete

communication object. Use the NULL communication object to run and test

Enterprise Link while your own communication object is still in

development. For more information on the name space and other important

features of the NULL communication object, see the file null_config.tcl

located in the directory %ELROOT%\lib\NULL.
1-8

Concepts

Configuration Tool Overview
3. A utility component that provides Tcl and Tk programmers with many

useful routines for manipulating data and creating windows. You should

use these utilities when you develop a communication object.

Configuration Tool User Interface

The configuration tool allows the end user to create new configured objects

or modify existing ones. The name of the configured object currently open

for editing is displayed in the title bar of the configuration tool’s main

window. The main window appears when the configuration tool is first

started. The Open... menu item in the main window’s File menu opens any

configured object for editing.

The configuration tool allows the end user to organize a configured object’s

configured methods into a hierarchy. These are displayed in the main window

as nodes in the Method Selector diagram. This diagram appears blank if no

configured methods are currently defined. To create a new configured

method, click on the Add Method... button. This causes the Add Method

window to appear. To edit an existing configured method, select the
1-9

Concepts

Configuration Tool Overview
appropriate node on the diagram then click on the Edit Method... button. This

causes the Edit Method window to appear.

The Edit Method window displays mappings as a multicolumn list of

source-destination pairs, along with any transformation expressions defined

for the mappings. This list is empty if no mappings are currently defined, as is

the case for newly created configured methods.
1-10

Concepts

Configuration Tool Overview
To define new mappings click on the Edit Mapping... button. To edit an

existing mapping, select the existing mapping then click on the Edit

Mapping... button. In either case, the Edit Mapping window appears.

The Edit Mapping window allows the end user to add new mappings to the

selected configured method or to modify existing mappings. The left-hand

side of this window displays all possible data sources, and the right-hand side

of this window displays all possible data destinations.

The Transformation text-entry box allows you to specify a procedure or

expression that will transform a value as it passes from one communication

object to another. In the illustration above, the elink.currentTime procedure—

one of the generic procedures included with Enterprise Link—is used to set

the value for the current date and time in the Mountain Standard Time zone.

For more information on generic procedures, see the Enterprise Link User’s

Guide.
1-11

Concepts

Configuration Tool Overview
To complete the creation of a configured method, specify trigger criteria by

clicking on the Edit Trigger... button located near the top of the Edit Method

window. This causes the Trigger Configuration window to appear.

The Trigger Configuration window allows the end user to specify the

circumstances that cause data to be transferred. The top portion of this

window contains generic trigger criteria and the lower portion contains

trigger criteria specific to each of the two systems that data is being

transferred between.

For more detailed information on Enterprise Link’s configuration tool, see

the Enterprise Link User’s Guide.
1-12

Concepts

Data Server Overview
Data Server Overview

The data server’s data flow looks generally like the following:

The elLinkClass object mediates all communication between the

communication objects, and each communication object mediates all

communication between its target system and the elLinkClass object. Each

communication object is composed of both Tcl code and C code, with the C

code responsible for direct communication with the target system’s API.

Each communication object may use spooler objects to store messages and

other information that cannot be delivered immediately. The elLinkClass

object also manages communication with the trace and error logs.

A communication class usually contains the methods provided by the base

communication class elCommClass. For information about each method,

see “elCommClass” on page 7-5.

You may add methods to your communication class to support or assist these

standard methods. You can also omit methods from your class if the

corresponding method in the base communication class elCommClass

already does everything you need it to do.
1-13

Concepts

Data Server Overview
The following describes the data server’s control flow:

1. The elserver script initializes some environment variables and global

variables, then invokes the elserver main function.

2. The main function creates the elLinkClass object and both

communication objects. This invokes the constructor method in each

object. The main function then passes control to the elLinkClass object.

3. The elLinkClass object invokes each communication object’s options

method to check for command-line option collisions. Collisions occur

when a command-line option is used by two different communication

objects, presumably to mean two different things.

4. If any collisions are detected, the elLinkClass object renames the

collision-bound options and invokes options again in both

communication objects, instructing the objects to use the renamed

options.

5. The elLinkClass object then invokes consumeOptions in each

communication object, instructing each object to remove any

command-line options it recognizes from the command line and to

remember them. Any remaining options are removed by the elLinkClass

object. Any options that were not removed by elLinkClass or either

communication object results in an error message.

6. If any command-line processing errors occurred, the elLinkClass object

invokes usage in each of the communication objects and formats a

human-readable command-line usage message. The usage message is

printed for the end user after a description of the command-line error.

The elserver script then exits.

7. If no command-line processing error occurred, the elLinkClass object

invokes the open method in each communication object. The open

method must first load the communication, spooling, or other

configuration files it needs from the configuration directory. The open

method must then use that information, and any command-line options

that its consumeOptions method found, to initialize the communication

object and prepare it for operation. If the communication object needs

any “worker” objects like spoolers, the open method must create and

initialize them.

8. The elLinkClass object loads each trigger file in the configuration

directory, then invokes setTrigger in each communication object for

each trigger. Each setTrigger method must examine the information

loaded from the trigger file and decide if the information describes a
1-14

Concepts

Data Server Overview
trigger that the communication object is responsible for detecting. If so,

the communication object must create any event or message handlers

that are required to detect the trigger, and if necessary, must

communicate to its target system the need to generate those events or

messages. Alternatively, the communication object could stop short of

contacting the target system and instead allow the run method to

communicate with the target system when the run method is invoked

later. The communication object must also create any cross-reference

information that is required to associate a configured method name with

the occurrence of a trigger condition.

9. The elLinkClass object invokes the run method in each communication

object. The run method completes any actions not already completed by

the setTrigger method in order to set up triggers in the target systems.

By default, the setTrigger method performs all required actions and the

run method in the elCommClass responds accordingly.

10. After all the triggers have been set, elserver goes into an event-driven

mode of operation.

11. When a communication object’s event handler activates, and the object

detects that a trigger condition has been satisfied, it gives the

elLinkClass::execute method the names of all the configured methods

that satisfied the trigger condition.

12. elLinkClass::execute determines which communication object is the

source and which is the destination for each configured method.

elLinkClass::execute then invokes read in each source communication

object to acquire an array containing the source values for statically

configured methods. If the source values are configured dynamically,

read invokes the selection procedure associated with the configured

mappings, notes the paths returned by each selection procedure

mapping, and reads the values returned by those paths.

13. elLinkClass::execute then maps the source values to the destination

paths—and transforms values and renames source paths if these options

are selected—passing the result to the write method in each destination

communication object. In the case of mappings that use selection and

renaming procedures, elLinkClass::execute invokes the renaming

procedure once for each of the paths returned by the selection

procedure.

14. When all data for all the configured methods has been written to the

destination communication objects, elLinkClass::execute invokes

commit in each communication object that was written to with the write
1-15

Concepts

Data Server Overview
method. For some target systems, such as RTAP, commit is a

meaningless operation. For those communication classes, you do not

need to write a commit method—the one in the elCommClass base

class will respond correctly. With target systems such as an SQL

database, the commit method makes permanent all the changes written

to the target system with write.

15. If an error occurred during any write operation—or in any selection,

renaming or transformation procedure—and if error handling is

configured to abort all methods when that error occurs,

elLinkClass::execute invokes rollBack in each communication object

that was written to with the write method. For some target systems,

rollBack is meaningless. For those communication classes, you do not

need to write a rollBack method—the one in the elCommClass base

class will respond correctly. For other communication classes, rollBack

undoes all the changes written to the target system with write since the

last commit or rollBack.

16. When the data server receives an exit command or a kill signal, it

destroys all the communication objects. This invokes each object’s

destructor method. The data server then exits.

Note There can be more than one write method in a configured method.
1-16

Concepts

Configuration Tool/Data Server Interface
Configuration Tool/Data Server Interface

To write the communication classes in Tcl, you must decide what

information the communication objects in the configuration tool will

exchange with those in the data server. Currently there are only two kinds of

information you need to decide on:

• trigger configuration

• access configuration

Trigger configuration is the information an end user enters into the

configuration tool’s Trigger Configuration window, and it describes when a

configured method should be executed.

Access configuration is the information an end user enters into the

configuration tool’s Access Configuration window, and it provides the

information that the communication object may need to contact the target

system—for example, an IP address, the name of the target system, a user ID

and password, a serial port name, speed or parity configuration, and so on.

Both kinds of information are communicated from the configuration tool to

the data server through configuration files in the config directory. The files

are designed to be loaded directly into the data server Tcl environment with

the Tcl source command. The most important information in each

configuration file is a number of set x y commands that have the result of

setting local variables in any Tcl procedure that loads the file.

For the trigger and access configuration files, you have several decisions:

• Whether your target system can trigger the execution of configured

methods and if so

• which variables will store the trigger information, and

• what values should those variables have and what do the values

mean?

• Whether your communication object needs any user-specified

information to contact your target system and if so

• which variables will store the user-specified information, and

• what values should those variables have and what do the values

mean?
1-17

Concepts

Tcl/C API Interface
Tcl/C API Interface

As described earlier, developing communication objects involves three main

activities:

1. extending the Tcl interpreter,

2. writing a communication class for the data server, and

3. writing a communication class for the configuration tool.

Software development can generally proceed on all three activities

simultaneously once the interfaces between these components are defined.

You must define the interface between the C-coded Tcl interpreter extensions

and the two Tcl-coded communication objects. The interface is simply the set

of Tcl commands and their arguments that the C extension will make

available to Tcl programmers.

If the interface to your target system is very simple—for example, an ASCII

protocol on a tty port or a socket—you may not need to write any C-code.

You may be able to use the standard Tcl file manipulation commands, or one

of the more popular sockets extension packages like TclX or DP to send

messages to and receive messages from your target system.

If you need to write a custom Tcl extension, then your interface design is

constrained by whatever communication mechanisms are available to

communicate with your target system. You’ll have a hard time doing any

more than your target system’s API lets you do. However, a common mistake

in defining the interface is to create a one-to-one correspondence between

Tcl commands and a complex suite of API functions or communication

primitives. When you create the Tcl interface, you have an opportunity to

simplify the mechanisms for communicating with your target system, which

makes writing the Tcl portion of your communication object much easier.

For example, if the mechanics of sending a message to and receiving a reply

from your target system require you to invoke 5 or 10 C functions for one

transaction, you should encapsulate that complexity in one command:

set result [sendMessage destination message]

or perhaps two commands:

sendMessage destination message
set result [getReply destination]

However, the desire to simplify the interface must be balanced against the

cost of simplification. Most people write Tcl code faster than an equivalent

amount of C code. Therefore, you don’t want to spend too much effort
1-18

Concepts

Tcl/C API Interface
encapsulating complexity in C, since it would be more cost effective to do

complex encapsulation in Tcl. Therefore, if simplifying the interface results

in a large body of C code, you may want to expose a slightly more complex

interface in Tcl commands and build the final simplifying layer on top of

those commands with Tcl code.

Another factor to weigh in the design of your interface is whether you want

the interface to your target system to be message-oriented or

database-oriented:

• In message-oriented systems, the communication object communicates

with its system by sending it messages and receiving messages from it.

Paths in the object’s logical name space identify fields in those messages.

• In database-oriented systems, the communication object communicates

with its system as if it was a database. Paths in the object’s logical name

space identify values in the database.

If you can find a way to interpret your target system as a database-oriented

system, do so. Writing interfaces for database-oriented systems is generally

easier than for message-oriented systems. The orientation of your target

system to a large extent determines your interface. A database-oriented

system generally looks like the following example with db_read returning a

list of values, one for each address:

db_write whichDatabase {{address value} {address value} ...}
db_read whichDatabase {address1 address2 ...}

A message-oriented system generally looks like the following example:

sendMessage destination message
set result [getReply destination]

Message-oriented systems tend to be more complex than database-oriented

systems because messages and replies generally consist of a great many

values sent and received simultaneously. These values must all be supplied at

once, must be formed into a message using the right formats, and must be in

the right order. Database-oriented systems are much more of a

random-access mechanism, where you can send each datum as it comes

without coordinating it into a larger message.

Yet another factor to weigh is the requirement for the data server to respond

promptly to external stimuli. Enterprise Link exchanges high-level

information between systems, so sub-millisecond response times are

generally not required. However, someone may be waiting for information to

be exchanged, so subsecond response is often desirable. To respond
1-19

Concepts

Tcl/C API Interface
promptly to external stimuli, the data server should not stop and wait a long

time for a communication object that is waiting for a response from its

system.

Ideally, every operation that may take a long time to complete should be

carried out asynchronously, and some kind of event handler should be

invoked when the operation is complete. This way, the data server can

continue processing other events while the communication object completes

the operation. This tends to be easier to do in a message-oriented

communication object because each message can be considered an

independent transaction.

In practice, the asynchronous approach is difficult to implement for a

database-oriented communication object and becomes more difficult if the

target system’s API prohibits it. If you get subsecond response from your

target system, you may choose to live with the delays and any potential

throughput degradation. If you have multisecond response times, you have

little choice but to use an asynchronous design. If the API prohibits a

straightforward asynchronous design, you must emulate such behavior by

starting a slave process that talks to the target system, potentially being

delayed for a long time, while the data server continues processing other

events.

All of these issues should be considered when designing the interface

between your C code and your Tcl code. Once the interface—the Tcl

command set—is defined, work can proceed in parallel on the C and the Tcl

portions of the communication object. For testing purposes, you may wish to

write some Tcl stubs to emulate the commands in the interface until the C

code is complete.

This book explains only the initial steps of using the build script to create

your own Tcl interpreter. For details on writing C code to extend your Tcl

interpreter, see Tcl and the Tk Toolkit by John K. Ousterhout (Reading,

Massachusetts: Addison-Wesley Publishing Company, 1994).

The Enterprise Link Developer’s Guide also describes writing the Tcl

portion of the data server and configuration tool communication classes (see

chapter 2, “Building a Tcl Interpreter,” chapter 3, “Developing the Data

Server Communication Object,” and chapter 4, “Developing the

Configuration Tool Communication Object”).
1-20

Concepts

Tcl Communication Class Concepts
Tcl Communication Class Concepts

This section provides Tcl communication class concepts that you must be

familiar with. Some of these concepts will affect the design of your

communication objects.

[incr Tcl]

The data server and portions of the configuration tool are written using

[incr Tcl], an object-oriented extension to the Tcl programming language.

The extension lets you define classes and methods, use inheritance and

instantiate objects with a syntax reminiscent of C++. If you are not already

familiar with [incr Tcl], you should review the incrTcl(3) man page. If you are

using Enterprise Link on Windows NT, you can access this man page

information through the file %ELROOT%\tcl\7.6\src\itcl-1.5.tar.

Error Logging and Tracing

The elLinkClass object provides a log method that communication objects

must use to write error, warning, and tracing information to the error and

tracing logs. The elLinkClass object reads the logging configuration,

decides where and how big the logs should be, and so forth. In particular,

elLinkClass keeps track of which kinds of messages should be logged and

which should not. Methods in communication classes should invoke the log

method any time they have anything to report or to trace. The log method

will either send the message to the appropriate log or will discard the

message depending on how the end user configures it.

Briefly, there are six message types the log method understands:

error Something has gone wrong and data probably has been or

will be lost.

warning Something has gone wrong but the data server was able to

recover successfully. Data is not lost.

verbose Status information for debugging communication objects.
1-21

Concepts

Tcl Communication Class Concepts
in Prints a copy of input received from the target system.

out Prints a copy of output going to the target system.

to Prints a copy of path/value pairs sent to a communication

object through its write method. This type is not

something you’ll invoke in your code. It is only invoked by

elLinkClass::execute. See “elLinkClass::log” on page

7-26 for more details.

The log in /log out style of input and output tracing is an important

diagnostic function built into communication objects, while to tracing

happens automatically in the data server. Together, these three types of

tracing follow the three major stages of data progress through Enterprise

Link:

1. in traces data as it enters the source communication object from the

source system.

2. to traces data as it moves from the source communication object to the

destination communication object.

3. out traces data as it leaves the destination communication object.

Because many vendors are usually involved in an Entprise Link deployment,

these three stages of tracing help you determine which vendor is responsible

when data either doesn't make it through, or gets corrupted inside Enterprise

Link.
1-22

Concepts

Tcl Communication Class Concepts
Discarding Values

End users can configure communication objects to discard information just

before it is sent to the corresponding target system or just after it is received

from the target system. Discarding information lets you debug

communication objects and methods without fear that you will send bad data

to the target system. The configuration information that controls discarding

data is read automatically by the elCommClass::open method and is

available to your methods in the $discardOutput and $discardInput

variables.

When the $discardOutput variable is 1, communication objects must not

send data from write methods to the target system. Ideally, nothing at all

should be sent to the target system, but this is not always possible. There may

be some “handshake” or “heartbeat” messages that must be exchanged with

the target system, especially if input is still being accepted. Output should

always be traced with an elLink log out... invocation before being discarded.

When the $discardInput variable is 1, communication objects must discard

any data received from the target system. Ideally, all data is discarded, but

again, this is not always possible. There may be “handshake” or “heartbeat”

messages that must be acted upon to keep the communication link with the

target system open, especially if output is still being sent to the target system.

Input should always be traced with an elLink log in... invocation before being

discarded (see “Error Logging and Tracing” on page 1-21).

When the $discardInput and $discardOutput variables are both 1,

communication objects must not even attempt to open a connection to their

target system. This setting must be interpreted to mean the target system is

probably not even present and the data server is being operated strictly in a

debugging mode. The data server must function even when it can’t

communicate with the target system for which it was instructed to discard

both input and output.
1-23

Concepts

Tcl Communication Class Concepts
Spooling Data

If your communication object and your target system will be separated by a

less-than-reliable WAN, or if your target system itself is less than reliable, you

must build spooling capability into your communication object. Spooling

allows you to buffer values written to your object while the network or target

system is unavailable. The data server provides three classes to help you

spool information:

• The elSpoolerClass is the base class for the other two spooler classes. It

contains an open method that knows how to load a standard spooler

configuration file and a few small utility functions that let you query the

configuration from outside a spooler object (see “elSpoolerClass” on page

7-34).

• The elFIFOSpoolerClass implements a first-in first-out (FIFO) spooler.

You can append character-string messages to the spooler and retrieve

them later (see “elFIFOSpoolerClass” on page 7-21).

• The elRASpoolerClass implements a random-access spooler. You must

specify an “ID tag” for each message you spool, and you can retrieve and

delete messages by specifying the tag (see “elRASpoolerClass” on page

7-30).

Logical Name Space Interpretation

A logical name space is the set of all the character-string names for addresses

in the system from which data values can be received or to which data values

can be sent. Enterprise Link has little built-in knowledge of how information

is organized in any system. The product simply assumes that some subset of

the values in the system can be addressed using character string names and

that for some systems the naming scheme is hierarchical.

Names of values in the logical name space are called paths because most

end users are familiar with the UNIX or Windows NT file systems, which

represent one kind of hierarchical logical name space. For example, if you

build a UNIX or Windows NT file system communication object, values

would be the contents of files and paths would be the pathnames of those

files. A path has two representations:

• a human-readable representation

• a Tcl-list representation
1-24

Concepts

Tcl Communication Class Concepts
The human-readable representation is the conventional representation for a

path. The Tcl-list representation has a Tcl list element for the name in each

level in the path. For example, if the human-readable representation of a path

were /usr/mail/andrew, then the corresponding representation as a Tcl list

would be {usr mail andrew}.

If your logical name space is not hierarchical, then your path has only one

level. Every value will have a name and all those names will be displayed as

one, possibly very long, list in the configuration tool’s main window. As a

rule, if you have several hundred names in your name space, you should

impose some sensible hierarchy on the names to improve usability. In the

configuration tool, it is much easier to manipulate several hundred or several

thousand names in a hierarchical path than it is to manipulate a single long

list of these names.

In addition to deciding how to convert the human-readable paths into Tcl lists

and vice-versa, you must also determine the meaning of paths in the logical

name space. In message-oriented systems, paths in the name space usually

look like the following and identify fields in messages:

/messageName/fieldName

In database-oriented systems, paths in the name space usually identify values

in the database. A relational database path may look like the following:

/schemaName/tableName/fieldName

You must determine what format for paths makes sense for your target

system. Then you must implement that format in your communication class

and document it so your end users can create configured methods.

If your target system has tables or messages that are directly addressable in

the name space—as opposed to being hidden deep in the implementation of

your communication class—you must answer the following questions:

1. How do I know when a message is complete and can be sent?

2. How do I know when a row in a table is complete and I can start putting

data in the next row?

3. If I need to map data from different rows in the same table into different

destinations, how can I do that?

4. If I need to map data from the same kind of message into different

locations depending on what is in the message, how can I do that?

Questions 1 and 2 are answered by the write method in the communication

class. When you execute a configured method, write is invoked once for

each mapping to a communication object. In all communication classes with
1-25

Concepts

Tcl Communication Class Concepts
directly addressable messages and tables in the logical name space, each

write invocation specifies one complete message or table row. In general, if

your write method was not passed enough information to populate a

complete message or table row, you should log an error and inform the

end user that the configured method is incomplete.

The exception to this rule is when a directly addressable table is contained in

a message. If it only makes sense to send one such message of any given type

for any given trigger, each write method can add a row to the table and the

commit method can send the message on its way. If you see a need to send

multiple messages, each containing a different table, then you must implicitly

identify the message that belongs to a given row of values in a configured

method.

The best way to identify the message is to find or synthesize a field in the

message outside of the table that is guaranteed to be different for every

different message that could be triggered by the same trigger. If you require

your end users to specify a value for this field in every configured method

that writes to the table, then you can use that field to determine to which

message the row values in the write invocation belong. You can create new

messages/tables for every different value and send them all when commit is

invoked.

Questions 3 and 4—about mapping values from different rows into different

destinations—are answered by adding to your Trigger panel in the

configuration tool. If the configured method you execute depends on the

values in a row or in a message, the Trigger panel must contain fields to let

you specify those fields and values. For example, you could define a Trigger

panel that looks like the following:

Trigger the configured method when:

the value of path XXX in the target system changes AND
Table TTT, field YYY has the value ZZZ

If you leave YYY and ZZZ empty, then the configured method is executed every

time the value of path XXX in the target system changes, assuming, of course,

that you can persuade the target system to notify the communication object

when the value of that path changes. If you specify YYY and ZZZ differently in a

number of different configured methods, then you are saying to execute each

method only on the rows in the table TTT whose field/value data match the

criteria laid out in the Trigger panel.
1-26

2

2 Building a Tcl Interpreter

Building a Tcl Interpreter
To extend the Tcl interpreter, you must first build your own version of the Tcl

interpreter supplied with Enterprise Link, then write C code to extend your

version of the interpreter. This chapter covers only the first part, providing

instructions to build your own Tcl interpreter and describing the behavior of

the build script. Writing the C code necessary to extend the Tcl interpreter is

not covered in this book. For that information, see Tcl and the Tk Toolkit by

John K. Ousterhout.

To build your own Tcl interpreter, you must have the Enterprise Link

developer’s component (ELINK-TCLDEVEL) installed. If you do not already

have the component installed on your system, see the Enterprise Link

Installation Guide.

The ELINK-TCLDEVEL component provides the following items:

• A build script that builds a Tcl interpreter using the files provided by the

ELINK-TCLDEVEL component.

• Copies of the Tcl public distribution source and patch files that were used

to build the Tcl interpreter shipped with Enterprise Link.

• Source files (elMain.c on HP-UX and elsh.c on Windows NT) that can be

customized to incorporate new Tcl libraries and commands.

On HP-UX systems, the ELINK-TCLDEVEL component provides the

following additional items:

• A setup script that creates a writable copy of the build directory.

• A copy of the GNU public distribution program patch that allows you to

apply patches to the Tcl public distributions.

• The include file crStandards.h that is needed by the source file elsh.c.

• The archived library libelsh.a that contains Enterprise Link functions,

including compiled versions of the source files elMain.c and elsh.c.

• The archived library libtcllic.a that contains needed licensing functions.
2-2

Building a Tcl Interpreter
On Windows NT systems, the ELINK-TCLDEVEL component provides the

following additional items:

• Windows NT/Intel binaries for the GNU programs tar, patch, and sed, as

well as cygwin.dll, a DLL required by these programs. If required, source

code for these programs can be obtained from

ftp://ftp.cygnus.com/pub/gnu-win32/latest. The program tar is used to

unarchive the tar files, and sed is used to edit some of the Tcl makefiles.

• elRFC.obj, an object file generated with Microsoft Visual C++ 4.2

containing Enterprise Link Tcl bindings for SAP R/3 RFCs.
2-3

Building a Tcl Interpreter

Building a Tcl Interpreter on HP-UX Systems
Building a Tcl Interpreter on HP-UX Systems

1. Install the Enterprise Link developer’s component ELINK-TCLDEVEL (see

the HP-UX version of the Enterprise Link Installation Guide for

instructions).

2. Prepare for the build by creating a writable copy of the build directory:

cd
${TCLROOT}/src/Setup

3. Change to your newly created build directory and execute the build script:

cd myBuildDir
./Build

The first run of the build script may take up to half an hour since it must

unpack and compile all the Tcl source files. After the build script successfully

completes, you will have a basic Tcl interpreter named elsh.

Note If you don’t have the products RTAP and SAP installed on your system, the

new elsh Tcl interpreter will not support the missing products.

4. If the build fails because you have an older version of the GNU program patch

on your system, clean up the build directory and rerun the build script using

the -patch option:

./Build -clean

./Build -patch

This option causes the build script to build patch version 2.2, and then use

patch to apply patches. Older versions of patch have a defect that the Tcl

public distribution patch files encounter. This defect causes problems when

applying publicly distributed patches to these source files.

5. Customize elsh.c, elMain.c, and build to incorporate your new Tcl commands

and libraries.

6. Rerun the build script to build a customized Enterprise Link Tcl interpreter.

7. After you build a working Enterprise Link Tcl interpreter, rerun the build

script using the -clean option to clean up your build directory:

./Build -clean
2-4

Building a Tcl Interpreter

Building a Tcl Interpreter on Windows NT™ Systems
Building a Tcl Interpreter on Windows NT™ Systems

Note If you intend to use the SAP Communication Object, you must already have

SAP R/3 RFC libraries installed on your system in order for the newly built

elsh to support this product.

1. Install the Enterprise Link Tcl interpreter component ELINK-TCL and

developer’s component ELINK-TCLDEVEL (see the Windows NT version of

the Enterprise Link Installation Guide for instructions).

2. Create your own development directory and copy all files and subdirectories

from %TCLROOT%\src to your development directory.

3. Add your new development directory and its subdirectory, gnu-win32, to the

environment variable PATH. Set environment variables through the System

Properties window’s Environment tab. You can access the System Properties

window by opening the control panel then by double-clicking on the System

icon.

4. Open a command prompt window and change to your new development

directory.

5. Run the command .\Build to create a basic Tcl interpreter called elsh.exe.

If this command fails, run the command .\Build -clean followed by .\Build.

Note If another user installed Visual C++ on your system, you should check the

Include environment variable to make sure it contains the directory path

C:\msdev\include, and that the Lib environment variable contains the directory

path C:\msdev\lib, assuming that Visual C++ is installed in C:\msdev.

6. Customize the elsh.c and build files in order to incorporate your new Tcl

commands and libraries. The build file is a Tcl script.

7. Rerun the build script in order to build the customized Enterprise Link Tcl

interpreter.

8. Once you have built a working Enterprise Link Tcl interpreter, rerun the build

script with the -clean option to clean up your build directory.
2-5

Building a Tcl Interpreter

The Build Script
The Build Script

The build script included with the Enterprise Link Tcl developer’s component

does most of the work required to build a Tcl interpreter. This section

describes what gets compiled and linked when you execute the build script,

and how you can use the build script’s compile and link options.

Include Files and Symbolic Constants

For compiling, the build script tells the compiler where to find the include

files needed to build a Tcl interpreter. On both HP-UX and Windows NT

systems, these files are in the directories myBuildDir/include, myBuildDir/tk,

and myBuildDir/tcl.

On HP-UX systems, the build script tells the compiler where to find the X11

include files. For HP-UX 10.20, these files are under the directory

/usr/include/X11R5.

If you have SAP installed on your system, the build script also defines the

C preprocessor symbolic constant INIT_SAP to include SAP’s RFC

functionality.

On HP-UX systems, the build script defines the C preprocessor symbolic

constant INIT_LIC to include Enterprise Link licensing functionality.

You can tell the compiler where to find include files by using the -I

command-line option or, on HP-UX systems, by using the HP-UX

environment variable CCOPTS. Similarly, you can define C preprocessor

symbolic constants using the -D command-line option. On Windows NT

systems, for example, the -D command-line option could look like the

following:

cl -Ox -W3 -DCRTAPI1=_cdecl -DCRTAPI2=_cdecl -nologo -D_X86_=1
-DWINVER=0x0400 -DWIN32 -D_WIN32 -D_MT -D_DLL -Ic:\msdev\include
-I..\win -I..\generic -D__WIN32__ -DUSE_TCLALLOC=0 -Dtry=__try
-Dexcept=__except -c -ImyBuildDir\include -ImyBuildDir\tk4.2\generic
-ImyBuildDir\tcl7.6\generic -Fo.\ myBuildDir\elsh.c

While on HP-UX systems, the -D command-line option could look like this:

c89 -O -c \
-DelTCL_HOME=/opt/tcl -DelTCL_VERSION=7.6 \
-DelINIT_SAP -DelINIT_LIC \
-ImyBuildDir/include -ImyBuildDir/tk -ImyBuildDir/tcl \
-I/usr/include/X11R5 applic.c
2-6

Building a Tcl Interpreter

The Build Script
If you are compiling on HP-UX from the command line, you can shorten this

command by setting CCOPTS appropriately. If you are running either a

Bourne or a Korn shell, the syntax is

CCOPTS=’-DelTCL_HOME=/opt/tcl -DelTCL_VERSION=7.6 \
-DelINIT_SAP -DelINIT_LIC \
-ImyBuildDir/include -ImyBuildDir/tcl \
-I/usr/include/X11R5’; export CCOPTS

c89 -O -c applic.c

If you are running a C shell, the syntax is

setenv CCOPTS ’-DelTCL_HOME=/opt/tcl -DelTCLVERSION=7.6 \
-DelINIT_SAP -DelINIT_LIC \
-ImyBuildDir/include -ImyBuildDir/tcl \
-I/usr/include/X11R5’

c89 -O -c applic.c

Tcl Libraries

After compiling, the build script builds the Tcl libraries in the current

directory, myBuildDir.

On HP-UX systems, the build script also builds the Tcl libraries in the Tcl

source directory, myBuildDir/tcl.

On Windows NT systems, the build script builds the Tcl libraries in the

following additional directories:

• the Tcl source directory: myBuildDir\tcl7.6\win

• the Tk source directory: myBuildDir\tk4.2\win

• the TclX source directory: myBuildDir\tclx7.6.0\win

• the [incr] Tcl source directory: myBuildDir\itcl-1.5\win

After building the libraries, the build script tells the compiler to search for

and link to the Tcl libraries.

If you did not run the build script provided by the ELINK-TCLDEVEL

component, but you want to build a custom Tcl interpreter, you must tell the

compiler to search for and link to the Tcl libraries that were used to build the

elsh interpreter shipped with Enterprise Link. These Tcl libraries are located

in the directory /opt/tcl/7.6/lib on HP-UX systems, and in the directory

%TCLROOT%\lib on Windows NT systems. These directories are included in the

ELINK-TCLDEVEL component.

On HP-UX systems, the build script tells the compiler to search for and link

to X11 libraries. For HP-UX 10.20, the X11 libraries are usually found in the

directory /usr/lib/X11R5.
2-7

Building a Tcl Interpreter

The Build Script
SAP RFC Libraries on HP-UX Systems

If you have SAP installed on your system, the build script tells the compiler to

search for and link to SAP RFC libraries to include SAP’s RFC functionality.

For HP-UX 10.20, the SAP RFC libraries are usually found in the directory

/opt/sap/3.0c/rfcsdk/lib.

• The build script tells the compiler to search for then link to the product

licensing library in the directory /opt/rtap/A.07.00/shlib or in the directory

/opt/rtap/E.01.20/shlib.

• The build script tells the compiler to link to the following libraries in the

order shown:

• The archived library libelsh.a that contains Enterprise Link

functions.

• The archived library libtcllic.a that contains Enterprise Link

licensing functions.

• Optionally the archived library librfc.a that contains any needed

SAP RFC functions.

• The archived library libtcl.a that contains any needed Tcl

interpreter functions.

• The archived library libX11.a that contains any needed X11

functions.

• The math library libm.a.

You can tell the compiler to search for and link to libraries using the -L

command line option. You can tell the compiler to link to libraries using the -l

command line option. For example,

c89 -O -Wl,-E \
-o myBuildDir/elsh myBuildDir/applic.o \
-LmyBuildDir -LmyBuildDir/tcl
-L/opt/tcl/7.6/lib -L/usr/lib/X11R5 \
-L/opt/sap/3.0c -L/opt/sap/3.0c/rfcsdk/lib \
-lelsh -ltcllic -lrfc \
-ltcl -lX11 -lm
2-8

Building a Tcl Interpreter

The Build Script
SAP RFC Libraries on Windows NT™ Systems

If you have SAP R/3 RFC libraries installed on your system, the build script

tells the compiler to search for and link to the following libraries and object

files in order to include SAP’s RFC functionality:

• elRFC.obj: an object consisting of Tcl bindings for the SAP R/3 RFC

interface.

• libtcl.dll: a DLL for Tcl version 7.6, this file contains any needed Tcl

interpreter functions.

• librfc32.dll: a DLL for SAP R/3 RFC functions.

• System DLLs: msvcrt.dll, oldnames.dll, kernel32.dll, advapi32.dll,

user32.dll, gdi32.dll, comdlg32.dll, and winspool.dll.

For example,

link /NODEFAULTLIB /INCREMENTAL:NO /PDB:NONE /RELEASE /NOLOGO
-align:0x1000 -subsystem:console,4.0 -entry:mainCRTStartup
myBuildDir\elsh.obj myBuildDir\elRFC.obj
myBuildDir\tcl7.6\win\libtcl.lib c:\sap\3.0c\rfcsdk\lib\librfc32.lib
msvcrt.lib oldnames.lib kernel32.lib advapi32.lib user32.lib gdi32.lib
comdlg32.lib winspool.lib -out:myBuildDir\elsh.exe
2-9

3

3 Developing the Data Server

Communication Object

Developing the Data Server

Communication Object
This chapter describes how to develop a communication object for the

Agilent Technologies Enterprise Link data server.

To develop a Tcl communication object for the data server, you write

methods for a communication class. Agilent Technologies recommends that

you add the following points into your development of the data server

communication object:

• Ensure that you do not enable the data server to create or display a

window.

• Ensure that the elserverPath contains the full directory pathname of the

elserver process. You can use this variable to determine which bin

directory elserver will reside in.

• In order for the data server to support trigger tracing, ensure that the

communication object calls the following Tcl procedure whenever the

communication object triggers a method:

elLink log trigger $this {[

set traceMsg “<my type of trigger>”
<collect/compose additional communication object specific
information here>
append tracemsg “<additional information>”
set traceMsg

]}

Data Server Methods

The following methods are typically used in the development of

communication objects for data servers. All of the methods except the

supports method are optional. If your communication class does not

support the functionality in the method, you do not need to develop the

method since the elCommClass base class provides default methods that

respond correctly for unsupported functionality. To take advantage of the

default methods, make your communication class inherit from the

elCommClass base class.
3-2

Developing the Data Server Communication Object
Example itcl_class myCommClass {
inherit elCommClass

...
}

Method Name Description Page

supports Indicates whether or not a feature is supported. 3-9

selectionProcedures Retrieves, deletes, executes and creates selection procedures. 3-10

constructor Initializes instance variables. 3-14

destructor Shuts down communication with the target system. 3-15

list2path Converts a Tcl list to a path string. 3-16

path2list Converts a path string to a list. 3-17

options Queries and sets command-line option keywords. 3-18

consumeOptions Processes command-line arguments. 3-19

usage Returns command-line usage information. 3-20

open Loads configuration information and prepares the object for use. 3-21

setTrigger Sets a trigger for an indicated method. 3-23

run
Invoked by the data server after all triggers have been passed to
setTrigger.

3-23

getChildren Returns the child node names as a Tcl list. 3-25

read Reads values from the target system. 3-26

write Writes values to the target system. 3-29

commit Makes all write invocations since the last commit or rollBack permanent. 3-31

rollBack Undoes all write invocations since the last commit or rollBack. 3-32

getSpoolPaths
To support the Diagnostic GUI display of spool files in your own
communication object.

3-33
3-3

Developing the Data Server Communication Object
Enterprise Link Communication Object Methods

All of the methods of an Enterprise Link communication object that change

the current working directory during their execution must be sure to restore

the current working directory to its original value before returning. Failure to

do this will result in undesirable behavior of the elserver process. For

example, it will no longer be possible to stop the elserver process from the

interactive configuration tool elconfig.

The current working directory must be restored whenever any

communication object method returns successfully, unsuccessfully, and

whenever a Tcl error occurs during method execution.

Note that the current working directory can be obtained by calling the Tcl

procedure pwd and can be changed by calling the Tcl procedure cd.

The Tcl method shown below demonstrates how to use the Tcl catch

procedure to ensure that the current working directory is always restored to

its original value:

method write args {

--- note the original working directory ---
set orig_pwd [pwd]

--- do the write inside a “catch” command ---
if {[catch {

:
cd <the desired directory>

:
<do write-related stuff here>

--- restore current working directory ---
} rv]} {

catch {cd $orig_pwd}
error $rv

} else {
cd $orig_pwd

}

return $rv
}

Note It’s usually faster to write Tcl code than to write C code because in Tcl you

avoid C’s compile-link-execute cycle. However, the resultant Tcl code

generally runs one hundred to one thousand times slower than a

corresponding C function. If you expect your communication objects to do a

lot of low-level data manipulation, you may choose to write their most

expensive parts in C rather than in Tcl. If you’re not sure how expensive the

Tcl code will be, you can always write it first in Tcl and then later translate

into C some or all of whatever turns out to be the most expensive.
3-4

Developing the Data Server Communication Object
To develop a new communication object for the data server, do the following:

Step 1: Develop an [incr Tcl] method to indicate which features are supported.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::supports

For a description of how to develop this method, see “Developing the

supports Method” on page 3-9.

Step 2: Optionally develop an [incr Tcl] method to retrieve, execute, create

and delete user-configured selection procedures for the

communication object.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::selectionProcedures

For a description of how to develop this method, see “Developing the

selectionProcedures Method” on page 3-10.

Step 3: Optionally develop an [incr Tcl] method to carry out non-trivial

initialization of instance variables.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::constructor

For a description of how to develop this method, see “Developing the

constructor Method” on page 3-14.

Step 4: Optionally develop an [incr Tcl] method to shut down communication

with the target system.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::destructor

For a description of how to develop this method, see “Developing the

destructor Method” on page 3-15.
3-5

Developing the Data Server Communication Object
Step 5: Optionally develop an [incr Tcl] method to convert a Tcl list to a path

string.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::list2path

For a description of how to develop this method, see “Developing the

list2path Method” on page 3-16.

Step 6: Optionally develop an [incr Tcl] method to convert a path string to a

Tcl list.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::path2list

For a description of how to develop this method, see “Developing the

path2list Method” on page 3-17.

Step 7: Optionally develop three [incr Tcl] methods to query and set

command-line option keywords, search a list of command-line

arguments, and return command-line usage information.

For example, if the target system type is MYSYS, the methods should have

the following names:

elServerMYSYSClass::options
elServerMYSYSClass::consumeOptions
elServerMYSYSClass::usage

For a description of how to develop these methods, see “Developing the

options Method” on page 3-18, “Developing the consumeOptions Method” on

page 3-19, and “Developing the usage Method” on page 3-20.

Step 8: Optionally develop an [incr Tcl] method to load the configuration file

and set the instance variables.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::open

For a description of how to develop this method, see “Developing the open

Method” on page 3-21.
3-6

Developing the Data Server Communication Object
Step 9: Optionally develop an [incr Tcl] method or methods to set a trigger for

the indicated method.

For example, if the target system type is MYSYS, the method or method pair

should have the following names:

elServerMYSYSClass::setTrigger
elServerMYSYSClass::run

For a description of how to develop the setTrigger method or the

setTrigger and run method pair, see “Developing the setTrigger and run

Methods” on page 3-23.

Step 10: Optionally develop an [incr Tcl] method to return child node names as

a Tcl list.

For example, if the target system type is MYSYS, the method should have the

following name:

elServerMYSYSClass::getChildren

For a description of how to develop this method, see “Developing the

getChildren Method” on page 3-25.

Step 11: Optionally develop four [incr Tcl] methods to read values from the

target system, write values to the target system, and commit or roll

back write invocations in target systems that support a commit

concept.

For example, if the target system type is MYSYS, the methods should have

the following names:

elServerMYSYSClass::read
elServerMYSYSClass::write
elServerMYSYSClass::commit
elServerMYSYSClass::rollBack

For a description of how to develop these methods, see “Developing the read

Method” on page 3-26, “Developing the write Method” on page 3-29,

“Developing the commit Method” on page 3-31, and “Developing the rollBack

Method” on page 3-32.
3-7

Developing the Data Server Communication Object
Step 12: Integrate the new communication object into the data server.

1. Copy the elserver file located in the bin directory to a different directory.

2. Edit the elserver file and replace all references to one of the communication

objects (usually RTAP) with the name of your object and all references to the

class of that object (usually RTAP_class) with the class of your object.

3. Adjust your PATH environment variable so that it finds your elserver file

before the default elserver file.
3-8

Developing the Data Server Communication Object

Developing the supports Method
Developing the supports Method

You must develop the supports [incr Tcl] method. This method indicates

whether or not dynamic mapping and time-based triggers are supported. The

data server invokes this method at startup to determine what functionality

the communication object provides and what data server facilities are

needed. When the data server invokes supports, it passes this method one

parameter: a keyword identifying a unit of functionality that the data server

wants to know about. The expected return value is either 0 or 1. The

supports method must recognize the following keywords:

selection procedures Indicates whether or not the communication object

supports dynamic mapping. A return value of 1 allows the communication

object’s read method to invoke selection procedures.

time triggers Indicates whether or not the communication object

supports time-based triggers. If the communication object does not support

time-based triggers, the data server handles all time-based triggering.

Unrecognized keywords should cause the supports method to return 0,

which means the unrecognized unit of functionality is not supported.

The following example of a supports method shows that the communication

object does support dynamic mapping, but does not support time-based

triggers.

Example method supports args {

set l [llength $args]

if `keyword’ is omitted, return a list of
recognized keywords
if {$l == 0} {

return [list “selection procedures” “time triggers”]

else if `keyword’ is present
} elseif {$l == 1} {

set k [lindex $args 0]
switch $k {

“selection procedures” {return 1}
“time triggers” {return 0}

default {if {$debug} \
{error “Unrecognized keyword: $k”}}

}

else more than one argument has been supplied, error
} else {

utlArgEnd
}

return 0
}

3-9

Developing the Data Server Communication Object

Developing the selectionProcedures Method
Developing the selectionProcedures Method

If you want your communication object to support dynamic mapping, you

must develop the selectionProcedures [incr Tcl] method. This method gets,

deletes, executes or creates selection procedures. The selectionProcedures

method has four modes of operation.

1. Gets

In its first mode, selectionProcedures takes no arguments and returns a list

of selection procedures supported by the source communication object,

which includes selection procedures originating in both the communication

object and the data server.

The returned list contains three elements: the procedure name, procedure

arguments, and the application programming interface (API) version of the

selection procedure. For the E.02.20 version of Enterprise Link, the API

version should always be 1.

Example if {[llength $args] == 0} {
set rc {}
foreach proc_name [info procs {xxx_select_*}] {

regsub "^xxx_select_(.*$)" $proc_name {\1} p_name

--- fetch procedure's API version number ---
if {[info exists select_api_versions($p_name)]} {

set p_version $select_api_versions($p_name)
} else {

set p_version 0 ;# version is unknown
}

--- properly convert default selection procedure arguments ---
set p_args {}
foreach arg_name [info args $proc_name] {

if {[info default $proc_name $arg_name arg_value]} {
lappend proc_args [list $arg_name $arg_value]

} else {
lappend proc_args $arg_name

}
}

lappend rc [list $p_name $p_args $p_version]
}

return $rc
}

3-10

Developing the Data Server Communication Object

Developing the selectionProcedures Method
2. Deletes

In its second mode of operation, the selectionProcedures method takes any

number of selection procedure names as arguments and returns a Tcl list of

the names of deleted procedures.

Example set rc {}
foreach arg $args {

set arg_length [llength $arg]

if {$arg_length == 1} {
set p_name [lindex $arg 0]

rename xxx_select_$p_name {}

unset select_api_versions($p_name)
if {[array size select_api_versions] == 0} {

unset select_api_versions
}

lappend rc $p_name
}

}

3. Executes

In its third mode of operation, the selectionProcedures method takes any

number of two-item arguments. The first list item is a selection procedure

name and the second is a list of that selection procedure’s arguments.

This third mode of selectionProcedures returns a Tcl list of zero or more

three-item lists. The first item is the selection procedure executed, along with

the selection procedure’s arguments. The second item is the error code

generated from the execution. The third item is a list of selected source

paths, with each path in the form of a Tcl list. If the procedure execution is

successful, the item in the list representing the error code will be empty and

the last item will contain selected source paths. If the procedure execution

was unsuccessful, the error code will appear in the list and the following item

representing source paths will be empty.
3-11

Developing the Data Server Communication Object

Developing the selectionProcedures Method
Example set rc {}
foreach arg $args {

set arg_length [llength $arg]

--- just an execute-procedure request? ---
if {$arg_length == 2} {

set p_name [lindex $arg 0]
set p_args [lindex $arg 1]

--- set defined arguments ---
set el_args [list $this]

set sources {}

if {[info exists select_api_versions($p_name)]} {

--- if no errors occur, "err_code" item is empty ---
set err_code {}

set api_version $select_api_versions($p_name)

--- invoke selection procedure appropriately ---
switch -- $api_version {

"0" -
"1" {if {[catch {set sources [eval xxx_select_$p_name \
$el_args $p_args]}]} {

global errorInfo errorCode
set err_code [list $errorInfo $errorCode]
}

}

default {set err_code [utlNls "API version mismatch error: \
selection-procedure `%0' requires unsupported API version #%1" \
$p_name api_version]
}

} else {
set err_code [utlNls "Undefined selection-procedure \
(procedure=%0)" $p_name]

}

lappend rc [list $arg $err_code $sources]
}

}

4. Creates

In its fourth mode, the selectionProcedures method takes any number of

arguments in a four-item list. The first item is a selection procedure name.

The second item is a list of that selection procedure’s arguments. The third

item is the body text defining the selection procedure, and the fourth item is

the application programming interface (API) version of the selection

procedure. In the E.02.20 version of Enterprise Link, the API version is 1.

This fourth mode of the selectionProcedures method returns a Tcl list of

zero or more procedure names.
3-12

Developing the Data Server Communication Object

Developing the selectionProcedures Method
Example set rc {}
foreach arg $args {

set arg_length [llength $arg]

if {$arg_length == 4} {
set p_name [lindex $arg 0]
set p_args [lindex $arg 1]
set p_body [lindex $arg 2]
set p_vers [lindex $arg 3]

--is this an unsupported version of the selection-procedure API? --
if {$p_vers > 1} {

error [utlNls "Unsupported version of the selection-procedure \
API (procedure=%0 version=%1)" $p_name $p_vers]

}

proc xxx_select_$p_name $p_args $p_body
set select_api_versions($p_name) $p_vers
lappend rc $p_name

}
return $rc

}

3-13

Developing the Data Server Communication Object

Developing the constructor Method
Developing the constructor Method

You can optionally develop the constructor [incr Tcl] method. Most

communication objects will not have a constructor method, which is

necessary only if you need to carry out non-trivial initialization of instance

variables. For example, if you have an instance variable that is an array and

you need to populate the array with some constants initially, you would do

that in the constructor. If you need to initialize scalar instance variables,

you can do that in the declaration of the variable.

For example, if you have a message-oriented communication class and

logical name-space paths all have the form {messageName fieldName}, then

you may need a fieldNames instance variable that is an array. This array

converts message names into the list of fields defined for the message. The

constructor could initialize that array.

Example itcl_class myCommClass {
inherit elCommClass

protected numericVar 23 # initial value is 23
protected listVar {a b c} # initial value is {a b c}
protected fieldNames # an array variable

Initialize arrayVar
method constructor {

set fieldNames(messageName1) {fieldName1 ... N}
set fieldNames(messageName2) {fieldName2 ... N}
...

}
...

}

3-14

Developing the Data Server Communication Object

Developing the destructor Method
Developing the destructor Method

You can optionally develop the destructor [incr Tcl] method. The

destructor method should release all the resources used by your object.

This should include any other objects your object created, any

communication channels your object opened, any temporary files for your

object, and so on.
3-15

Developing the Data Server Communication Object

Developing the list2path Method
Developing the list2path Method

You can optionally develop the list2path [incr Tcl] method. This method

converts a Tcl list into a path string specification. A similar method must be

developed for the configuration tool (see “Developing the list2path Method”

on page 4-12).

The syntax of the path string specification should be appropriate for the type

of target system. For example, if the type of target system is Agilent

Technolgies’ RTAP product, path specifications would use the same syntax as

RTAP’s symbolic database addressing.

The data server invokes the list2path method to convert Tcl lists to ordinary

path string specifications. The data server displays the paths to the end user

as ordinary path strings but performs all computations on paths when they

are encoded as Tcl lists.

When the data server invokes list2path, it passes this method one

parameter: the Tcl list to be converted to a path string specification. It

expects the list2path method to return the resulting path string

specification.

The following example of a list2path method assumes that the path string

syntax is similar to that used by the UNIX file system—that is, item names

separated by solidus characters (/).

Example method list2path p {
return utlList2Path $p

}

3-16

Developing the Data Server Communication Object

Developing the path2list Method
Developing the path2list Method

You can optionally develop the path2list [incr Tcl] method. This method

converts a path specification into a Tcl list. A similar method must be

developed for the configuration tool (see “Developing the path2list Method”

on page 4-13).

The data server invokes path2list to convert ordinary path string

specifications to paths expressed as Tcl lists. This method must implement

exactly the opposite conversions that are implemented in the list2path

method.

When the data server invokes path2list, it passes this method one

parameter: the path string to be converted to a Tcl list. It expects the

path2list method to return the resulting Tcl list.

The following example of a path2list method assumes that the path string

syntax is similar to that used by the UNIX file system; that is, item names

separated by solidus characters (/).

Example method path2list p {
return utlPath2List $p

}

3-17

Developing the Data Server Communication Object

Developing the options Method
Developing the options Method

You can optionally develop the options [incr Tcl] method. This method gets

or sets the command-line option keywords supported by the communication

object. A similar method must be developed for the configuration tool (see

“Developing the options Method” on page 4-14).

When starting the data server, you can type in command-line options on your

operating system’s command line; for example, -file <name>. Command-line

option keywords, -file in this example, distinguish one command-line option

from another.

The data server invokes options up to two times during startup. The first

invocation is to get the list of default option keywords supported by the

communication object. If any of those keywords are also used by another

communication object or by the data server’s core, this method is invoked a

second time to rename those keywords. When the data server invokes

options the first time, it does not pass in any parameters. It expects the

options method to return a Tcl list of default command-line option

keywords. When the data server invokes options the second time, it passes

in one parameter: a Tcl list with the new (possibly changed) values for the

communication object’s command-line option keywords. The data server

expects the options method to return a Tcl list of these new command-line

option keywords. The number of items that the data server includes in this

Tcl list will always equal the number of items that were returned by the data

server’s first invocation of the options method.

The following example of an options method assumes that the

communication object supports two command-line options: -option1 name

(an option with one argument) and -option2 (an option with no arguments).

Example itcl_class myCommClass {
inherit elCommClass
protected option1Keyword -option1
protected option2Keyword -option2
...
method options {args} {

if {[llength $args] > 0} {
set optkeys [lindex $args 0]
if {[llength $optkeys] == 2} {

lassign $optkeys option1Keyword option2Keyword
}

}
Return the current command-line option keywords.
return [list $option1Keyword $option2Keyword]

}

3-18

Developing the Data Server Communication Object

Developing the consumeOptions Method
Developing the consumeOptions Method

You can optionally develop the consumeOptions [incr Tcl] method. This

method parses and consumes the command-line options contained in a

specified global variable. A similar method must be developed for the

configuration tool (see “Developing the consumeOptions Method” on page

4-15).

The data server invokes this method during startup to provide the

communication object with an opportunity to parse its command-line options

in the data server command line.

At startup, the data server invokes this method, passing it one parameter: the

name of the global variable containing the program’s command-line options

as a Tcl list. The consumeOptions method should examine this list and

remove any options that apply to the communication object. All

unrecognized options should be left untouched since the data server passes

the resulting list to the other communication object, then consumes all

command-line options supported by the core. If any command-line options

remain after this, the data server reports a usage error and exits.

To parse for and remove recognized command-line options, use the

utlGetArg utility (see “utlGetArg, utlPeekArg, utlArgEnd” on page 8-43). You

may use the utlPeekArg utility to examine, but not remove, a command-line

option that the data server’s core supports and will eventually remove.

In the following example, the consumeOptions method parses and

consumes the options supported in the example for the options method.

Example method consumeOptions {varName} {
upvar $varName args

Fetch command-line options.
set opt1 [utlGetArg $option1Keyword {default value}]
set opt2 [utlGetArg $option2Keyword]

}

3-19

Developing the Data Server Communication Object

Developing the usage Method
Developing the usage Method

You can optionally develop the usage [incr Tcl] method. This method returns

the text for a command-line usage message. The data server invokes this

method whenever command-line usage errors are detected. The data server

uses the information returned by this method to compose and print a

human-readable usage message. A similar method must be developed for the

configuration tool (see “Developing the usage Method” on page 4-16).

The returned value is a Tcl list with one entry per command-line option. Each

entry is itself a list with two elements: the option string and an English

explanation of the option. If the English explanation will not fit on one line,

you may indent the text by inserting new-line characters and space

characters. The data server converts all new-line characters followed by

space characters in the text into a single space character.

In the following example, the usage method returns the text in the example

for the options method.

Example method usage {} {
return “

{{\[$option1Keyword <name>]} {An option with a
parameter. Feel free to run this description over
multiple lines.}}

{{\[$option2Keyword]} {A flag option.}}”
}

3-20

Developing the Data Server Communication Object

Developing the open Method
Developing the open Method

You can optionally develop the open [incr Tcl] method. This method

prepares a communication object for operation. It should load any required

configuration file from the configuration directory. A similar method must be

developed for the configuration tool (see “Developing the open Method” on

page 4-17).

At some point you are likely to override this method in your communication

class. When this happens, you must invoke the base class open method,

which will load the data-discarding configuration for the object:

elCommClass::open

The method in the base class initializes the base-class instance variables:

protected discardInput
protected discardOutput

These variables are set to 0 by default, and to 1 when the communication

object has been configured to discard input from or output to the target

system (see “Discarding Values” on page 1-23).

If you are building a configuration tool access window for the target system,

this method must load the access configuration file that the window

produces. This method must then do any initialization or communication

channel creation associated with the information in the access configuration

file. If it is possible to open a connection to your target system using only the

defaults in the configuration tool’s access window, do not assume that the

access configuration file exists in your open method.

If your class supports data spooling, the open method should initialize the

spoolers as well.
3-21

Developing the Data Server Communication Object

Developing the open Method
Example ..

protected destAddr 23; # default connection parameters
protected destMode auto

protected connectionID; # for connection to your target system

method open {} {
elCommClass::open ;# invoke the base class open

Load the “access” config file
set configFileName [elLink configDir]/${this}_access.cfg
if {[file exists $configFileName]} {

if {[catch {source $configFileName} errMsg]} {

elLink log error $this \
{Cannot load $configFileName, must exit: $errMsg}

exit 1
} else {

set destAddr [set ${this}_access_destination_address]
set destMode [set ${this}_access_destination_mode]

}
}

If we're discarding both input and output, we're done -- do
NOT connect to the target system.
if {$discardInput && $discardOutput} {

return
}

Open a connection to the target system
if {[catch {set connectionID \

[openConnection $destAddr $destMode]} errMsg]} {
elLink log error $this \

{Cannot open connection to target system: $errMsg}
exit 1

}

Figure out the send spooler’s config file name. It’s
something like XXX2${this}_spooling.cfg.
set files *2${this}_spooling.cfg
catch {set files [glob $files]}
if {[llength $files] > 1} {

set msg “Using [lindex $files 0] as the `*2${this}’”
append msg “ spool config file: $files”
elLink log warning $this {$msg}
set files [lindex $files 0]

}

Start the send spooler.
if {[catch {elFIFOSpoolerClass $this.sendSpooler \

$files ${this}SendSpool} errMsg]} {
elLink log error $this \

{Could not start send spooler: $errMsg}
catch {$this.sendSpooler delete}

}
}

3-22

Developing the Data Server Communication Object

Developing the setTrigger and run Methods
Developing the setTrigger and run Methods

You can optionally develop the setTrigger [incr Tcl] and run [incr Tcl]

methods. These methods can be set up in either of two ways:

• the setTrigger method runs every time it receives trigger information, or

• the setTrigger method collects trigger information until the run method

is invoked by the elLinkClass::execute method.

In the first case, the setTrigger method performs all the activities described

in this section and the default run method does nothing. In the second case,

the activities are split between the setTrigger and run methods.

In both cases, the setTrigger method associates a configured method name

with a trigger condition. If necessary, the setTrigger method—or, in the

second scenario, the setTrigger and run method pair—tells the target

system to notify the communication object that a trigger condition occurred

and establishes a Tcl event handler to receive the notification.

In both cases, the setTrigger method takes a single argument: the

configured method name with which the trigger condition is associated. If

$discardInput is set to 1, ignore invocations to this method (see “Discarding

Values” on page 1-23).

The invoker’s local variables contain the description of the trigger condition.

Your setTrigger method should use the upvar command to extract the

values of these variables. The names and meanings of these variables are part

of the interface you defined between the configuration tool and the data

server. See “Configuration Tool/Data Server Interface” on page 1-17.

In the first case, the setTrigger method completes the trigger implementation

in your communication object by requesting the invocation of a Tcl handler

function whenever a trigger is detected. This function or method does not

have a reserved name and can be given any name you want. The handler

function needs to examine the triggers set in the object and invoke the

elLinkClass::execute method to execute all the methods whose trigger

conditions were met.

For example, if you have a message-oriented communication class and

receiving a message is the only way to trigger a method execution, then your

setTrigger method and handler function could look like the following

example.
3-23

Developing the Data Server Communication Object

Developing the setTrigger and run Methods
Example ...
protected triggers # trigger(msgName) = {method1 ... N}
protected lastMsg {} # The last message the app sent us
protected lastMsgName {}

method setTrigger {methodName} {

Set no triggers if input is being discarded.
if {$discardInput} {

return
}

upvar ${this}_trigger_msg_enable msgEnable \
${this}_trigger_msg_name msgName

#If
if {$msgEnable} {

lappend triggers($msgName) $methodName
}

}

The message handler method that is invoked every time a message
from the target system is received. “message” is a list of
values.
method msgHandler {msgName message} {

Tell the user a message was received
elLink log in $this {$message}

set lastMsg $message
set lastMsgName $msgName
elLink execute $triggers($msgName)

}

If you want to use the setTrigger and run method pair, you can set up the

run method to complete the trigger implementation in your communication

object by requesting the invocation of a Tcl handler function whenever a

trigger is detected. To do this, you could append the following lines to the

example given above:

Example method run {} {

set desiredMessageNames [array names triggers]

solicit_messages_from_application $desiredMessageNames

}

3-24

Developing the Data Server Communication Object

Developing the getChildren Method
Developing the getChildren Method

If your communication object supports dynamic mapping, you must develop

the getChildren [incr Tcl] method. This method returns the names of

children under a specified node that are actually available for the target

system’s name space.

The data server invokes this method whenever it needs to get the names of

child nodes. When the data server invokes getChildren, it passes this

method the full path name of the node (as a Tcl list) whose child names are

wanted. This method should return a Tcl list of child names that appear

directly under this node. The returned child names should not include any

path information.

The optional parameter -filter <pattern> specifies a pattern that filters child

names. Only child names that match <pattern> should be returned. If this

parameter is omitted, all child names should be returned.

By definition, the root node of the name space tree is the empty string.

Example method getChildren args {

fetch optional parameter
set fil [utlGetArg “-filter” “*”]

fetch required parameter
set n [utlGetArg]
utlArgEnd

if {$debug} {puts stderr “DEBUG: $this getChildren $args”}

return < compose a Tcl list of the nodes under `$n’ matching
`$fil’ here >

}

3-25

Developing the Data Server Communication Object

Developing the read Method
Developing the read Method

You can optionally develop the read [incr Tcl] method. This method reads

values from the target system and stores them in the source array. This

method is passed a list of method names for which to acquire data and the

name of the source array in which to store the data. When the triggering

criteria are complex, the structure of the source array is complex (see

“elCommClass::read” on page 7-12).

The elLinkClass::execute method invokes your read method when it needs

data values from your object in order to execute the list of configured

methods. Your read method must use elLinkClass::methodInfo to retrieve

the list of name space paths that specify which data values are needed. Your

method must also determine which, if any, selection procedures need to be

invoked, then invoke those selections procedures and note the paths they

return. Your read method must then retrieve any needed data values from the

target system.

In database-oriented communication objects, the read method must query

the database for the indicated source paths. In message-oriented

communication objects, the read method must find source values for all the

indicated source paths in the most recent message received from the target

system.

In message-oriented communication classes, the read method is the only

method that can tell if any received data was not mapped anywhere. When

such data is detected, the read method must issue a warning (see

“Discarding Values” on page 1-23).

The following examples show how to implement a simple read for a

message-oriented communication class and for a database-oriented

communication class.
3-26

Developing the Data Server Communication Object

Developing the read Method
Example 1 # The message-oriented read method

...
protected lastMsg {} ;# The last message the app sent us
protected lastMsgName {}

method read {methodNames srcArray} {

upvar $srcArray src
upvar ${srcArray}_select sel

Do nothing if input is being discarded.
if {$discardInput} {

return
}

Populate the source array
foreach field $fieldNames($lastMsgName) value $lastMsg {

set src([list $lastMsgName $field]) $value
}

Populate the selected-paths array
foreach method $methodNames {

foreach pair [elLink methodInfo select $method] {
lassign $pair destinationInfo sourceInfo
set sel($sourceInfo) [execute_selection_procedure $sourceInfo]

}
}

Check for unused values.
foreach field $fieldNames($lastMsgName) {

set unused([list $lastMsgName $field]) {}
}
foreach method $methodNames {

foreach pair [elLink methodInfo variable $method] {
lassign $pair destination source
catch {unset unused($source)}

}
foreach sourceInfo [array names sel] {

foreach path $sel($sourceInfo) {
catch {unset unused($path)}

}
}
foreach path [elLink methodInfo discard $method] {

catch {unset unused($path)}
}

}
}

3-27

Developing the Data Server Communication Object

Developing the read Method
Example 2 # The database-oriented read method

method read {methodNames srcArray} {
upvar $srcArray src
upvar ${srcArray}_select sel

Do nothing if input is being discarded.
if {$discardInput} {

return
}

Read the requested values from the database
foreach method $methodNames {

foreach pair [elLink methodInfo variable $method] {
lassign $pair destination source
set src($source) [read_from_app_database [$this list2path
$source]]

}
foreach pair [elLink methodInfo select $method] {

lassign $pair destinationInfo sourceInfo
set paths [execute_selection_procedure $sourceInfo]
set sel($sourceInfo) $paths
foreach path $paths {

set src($path) [read_from_app_database [$this list2path $path]]
}

}
}

Log the values read from the database
if {[array size source]} {

elLink log in $this {[
set trace_msg {Read from the $this database:}
foreach p [array names src] {

catch {append trace_msg "\n psrc($p)"}
}
set trace_msg]}

}

}

3-28

Developing the Data Server Communication Object

Developing the write Method
Developing the write Method

You can optionally develop the write [incr Tcl] method. This method sends

data to the target system. In communication classes with no concept of a

commit method, the values are written to the target system immediately. In

classes with a commit method, the values are only written to the target

system after the commit method is invoked or the values are undone when

the rollBack method is invoked.

The write method’s argument is the name of a variable in the invoking

procedure that contains a list of {destinationPath value} pairs.

This method is invoked once for every configured method that executes.

When values are written to a table, your write method should interpret all

writes to the same table as being to the same row of that table. The next

write invocation can start another row. In message-oriented communication

objects, when values are written to a message, your write method should

interpret all writes to the same message as being to the same instance of that

message. The next write invocation can start another message. For

messages that contain tables, the next write invocation generally starts a

new row in the table and the message is not sent to the target system until

commit is invoked.

If an error is encountered within the write method, you can discover how to

deal with the errors using the following:

set how [elLink methodInfo error [elLink curMethod]]

A how value of

• continue means log the error and write the other values in the list to the

target system.

• abandonMethod means log the error and return, without writing anything

to the target system.

• abandonAllMethods means do not log the error, but raise a Tcl error

condition with an informative error message. Your invoker is always

elLinkClass::execute. It will log the error, abandon work on all other

methods, and invoke rollBack for every object that was written to.

For more information on errors, see “Error Logging and Tracing” on page

1-21 and “Discarding Values” on page 1-23.
3-29

Developing the Data Server Communication Object

Developing the write Method
The following example shows a write method for a message-oriented

communication class where paths in the name space looks like

{messageName fieldName}.

Example # A worker method for error handling
method errorMsg {msg} {

if {[elLink methodInfo error [elLink curMethod]] == continue} {
elLink log error $this {$msg}

} else {
error $msg

}
}

The message-oriented “write” method
method write {varName} {

upvar $varName values ;# {{path1 value1} ... {pathN valueN}}
;# where path = {messageName fieldName}

Build a random-access array of values:
raValues(path) = value
#
and figure out how many different messages are being sent
foreach pair $values {

lassign $pair path value
lassign $path messageName fieldName
set raValues($path) $value
set messages($messageName) {}

}

Build each message:
messages(messageName) = {value1 ... N}
#
Note--fieldNames() is an instance variable in the communication object
describing what fields are in each message and in what order:
fieldNames(messageName) = {field1 ... fieldN}
foreach messageName [array names messages] {

foreach field $fieldNames($messageName) {

Complain if any fields are missing
set path [list $messageName $field]
if {[catch {set value $raValues($path)}]} {

errorMsg “You must specify a value for [list2path $path]”
set value {}

}
lappend messages($messageName) $value

}
}

}

Log the values about to be sent to the system
foreach messageName [array names messages] {

elLink log out $this {$messages($messageName)}
}

If we're discarding output, we're done
if {$discardOutput} {

return
}

Send each message to the target system
foreach messageName [array names messages] {

sendToApplication $messageName $messages($messageName)
}

}

3-30

Developing the Data Server Communication Object

Developing the commit Method
Developing the commit Method

You can optionally develop the commit [incr Tcl] method. This method

makes permanent in the target system the effects of all write invocations

since the last commit or rollBack. If your target system does not support

this concept, you do not need to define this method.

This method should work hard to avoid raising a Tcl error. If

elLinkClass::execute has already invoked commit in several

communication objects and then your communication object signals an

error, very little error recovery can occur. elLinkClass::execute has no

choice but to log an error and continue committing, because objects that

have been committed cannot be rolled back.

Example method commit {} {
commitChangesInApplication

}

3-31

Developing the rollBack Method

You can optionally develop the rollBack [incr Tcl] method. In

communication objects that support it, the rollBack method undoes the

effects of all the write invocations since the last commit or rollBack

invocation. If your target system does not support the concept, you do not

need to define this method.

Example method rollBack {} {
rollBackChangesInApplication

}

Developing the Data Server Communication Object

Developing the Object_getSpoolPaths Procedure
Developing the Object_getSpoolPaths Procedure

To support the diagnostic GUI display of spool files in your own

communication object, you must develop this new procedure. The Object_

getSpoolPaths procedure determines the name and data-flow direction of

each spool file associated with the communication object for a particular

configuration.

Each fname is the absolute path of a spool file, and each direction is

either incoming or outgoing.

Example proc <obj>_getSpoolPaths {configDir runDir} {
return [list <fname1> <direction1> <fname2> <direction2> ...]

}

For an example of the Object_getSpoolPaths procedure, see the file SAP_
spool.tcl, located in the directory %ELROOT%\lib\SAP.
3-33

Developing the Data Server Communication Object

Developing the Object_getSpoolPaths Procedure
3-34

4

4 Developing the Configuration Tool

Communication Object

Developing the Configuration

Tool Communication Object
This chapter describes how to develop a communication object for the

Enterprise Link configuration tool. In addition, this chapter describes how to

write the methods for the configuration tool’s interface class.

The configuration tool can be customized to support new target systems by

developing new communication objects. Each communication object

provides the following functionality to the configuration tool:

• Displays a view into the target system’s name space, which allows the

end user to more easily specify where data should be read from and

where it should be written to.

• Creates data mappings to and from the target system.

• Optionally specifies system-specific triggers.

• Optionally specifies system-specific access parameters such as host

computer names, login names, and passwords.
4-2

Developing the Configuration Tool Communication Object
The communication object is composed of three important components:

• an interface object

• a collection of trigger panel procedures

• a collection of access window procedures

In the current version of Enterprise Link, trigger panel and access window

routines are defined as procedures. This is necessary because Tk and [incr

Tcl] do not currently work well together. In future versions of Enterprise

Link, these procedures will eventually become methods.
4-3

Developing the Configuration Tool Communication Object
The components of a communication object are typically defined in a single

source file. A suggested source file layout is shown in the following figure.

A template source file is provided in the following directory:

<environment variable ELROOT>/lib/template/template_config.tcl

Note It is usually faster to write Tcl code than to write C code because Tcl avoids

C’s compile-link-execute cycle. However, the resulting Tcl code generally

runs 100 to 1000 times slower than a corresponding C function. If you expect

your communication objects to do a lot of low-level data manipulation, you

may choose to write their most expensive parts in C rather than in Tcl. If

you’re not sure how expensive the Tcl code will be, you can always write it

first in Tcl and then later translate into C some or all of whatever turns out to

run too slowly.
4-4

Developing the Configuration Tool Communication Object
To develop a new Enterprise Link configuration tool communication object,

follow these steps.

Step 1: Create a new configuration tool interface object (see “Developing the

Interface Object” on page 4-6).

You must always create a configuration tool interface object. This object

provides the configuration tool with a basic interface to the target system.

Step 2: Optionally create an access window for the target system (see

chapter 5, “Developing an Access Window”).

Creating the access window is optional. If you need to be able to define

access data that is unique to the target system, you’ll have to develop an

access window.

Step 3: Optionally create a trigger panel for the target system (see chapter 6,

“Developing a Trigger Panel”).

Creating the trigger panel is optional. If you need to support trigger criteria

that are unique to the target system, you’ll have to develop a trigger panel.

Step 4: Optionally create a message catalog file for the communication object

(see “Creating a Message Catalog File” on page 4-26).

Creating a message catalog file is optional. Message catalog files allow you to

easily change displayed text to support localization.

Step 5: Integrate the new communication object into the configuration tool.

1. Create a directory in the path $ELROOT/lib (%ELROOT%\lib on Windows NT

systems) and name the directory for your communication object. For

example, $ELROOT/lib/SAP.

2. Copy the set of files for your communication object to the new directory.

3. Create new configured objects with your communication object as either the

source or destination.
4-5

Developing the Configuration Tool Communication Object

Developing the Interface Object
Developing the Interface Object

The configuration tool uses interface objects to interface with the target

system. An interface object contains methods that can do the following.

• Indicate the functionality that the communication object supports.

• Handle system-specific configuration tool command-line parameters.

• Open a view into the target system’s name space.

Viewing the target system’s name space is an important feature of the

configuration tool. The configuration tool displays a system’s name space as

a tree diagram. These system-specific tree diagrams are presented to the

end user in the configuration tool’s Edit Mapping window.

Interface Object Methods

The following methods are typically defined for interface objects:

Method Name Description Page

supports Indicates whether or not a feature is supported. 4-10

list2path Converts a Tcl list to a path string. 4-12

path2list Converts a path string to a Tcl list. 4-13

options Queries and sets command-line option keywords. 4-14

consumeOptions Processes command-line arguments. 4-15

usage Returns command-line usage information. 4-16

open Loads configuration information and prepares the object for use. 4-17

loadNameSpace Loads the target system’s name space. 4-18

abortNameSpaceLoad Aborts the current name-space load in progress. 4-20

getChildren
For the target system’s name space, returns the child node names under
a parent node as a Tcl list.

4-21

selectionProcedures Deletes or creates selection procedures. 4-22
4-6

Developing the Configuration Tool Communication Object

Developing the Interface Object
Many of these methods must be defined since they are invoked by the

configuration tool. Others are invoked by the communication object and may

be needed to create a working interface object.

The following illustration shows the interaction between the interface object

methods and the configuration tool’s core.

Configuration
Tool Core

In
te

rf
ac

e
O

bj
ec

t
supports

list2path

path2list

options

consumeOptions

usage

open

loadNameSpace

abortNameSpaceLoad

getChildren

selectionProcedures
(Gets)

support information

list
path

path
list

default keywords
new keywords

command-line options

usage text

options

load request

abort request

parent
children

procedure names

selection procedure names

selectionProcedures
(Deletes)

selectionProcedures
(Executes)

selectionProcedures
(Creates)

deleted procedures

procedure names and arguments
execution errors and selected sources

procedure definitions
created procedures
4-7

Developing the Configuration Tool Communication Object

Developing the Interface Object
To develop a new configuration tool interface object, follow these steps:

Step 1: Develop an [incr Tcl] method to indicate which features are supported.

For example, if the target system type’s short name is MYSYS, the method

should have the following name:

elConfigMYSYSClass::supports

For a description of how to develop this method, see “Developing the

supports Method” on page 4-10.

Step 2: Develop two [incr Tcl] methods to convert a Tcl list to a path string

and to convert a path string to a Tcl list.

For example, if the target system type’s short name is MYSYS, the methods

should have the following names:

elConfigMYSYSClass::list2path
elConfigMYSYSClass::path2list

For a description of how to develop this method, see “Developing the

list2path Method” on page 4-12 and “Developing the path2list Method” on

page 4-13.

Step 3: Develop three [incr Tcl] methods to get and set command-line option

keywords, parse command-line options, and return the text needed for

a command-line usage message.

For example, if the target system type’s short name is MYSYS, the methods

should have the following names:

elConfigMYSYSClass::options
elConfigMYSYSClass::consumeOptions
elConfigMYSYSClass::usage

For a description of how to develop these methods, see “Developing the

options Method” on page 4-14, “Developing the consumeOptions Method” on

page 4-15, and “Developing the usage Method” on page 4-16.
4-8

Developing the Configuration Tool Communication Object

Developing the Interface Object
Step 4: Develop an [incr Tcl] method to open a connection to the target

system.

For example, if the target system type’s short name is MYSYS, the method

should have the following name:

elConfigMYSYSClass::open

For a description of how to develop this method, see “Developing the open

Method” on page 4-17.

Step 5: Optionally develop two Tcl methods to load the target system’s name

space and to abort name space loading.

For example, if the target system type’s short name is MYSYS, the methods

should have the following names:

elConfigMYSYSClass::loadNameSpace
elConfigMYSYSClass::abortNameSpaceLoad

For a description of how to develop these methods, see “Developing the

loadNameSpace Method” on page 4-18 and “Developing the

abortNameSpaceLoad Method” on page 4-20.

Step 6: Develop an [incr Tcl] method to return the child node names in the

target system’s name space as a Tcl list.

For example, if the target system type’s short name is MYSYS, the method

should have the following name:

elConfigMYSYSClass::getChildren

For a description of how to develop this method, see “Developing the

getChildren Method” on page 4-21.

Step 7: Optionally develop an [incr Tcl] method to delete or create

user-configured selection procedures for the communication object.

For example, if the target system type’s short name is MYSYS, the method

should have the following name:

elConfigMYSYSClass::selectionProcedures

For a description of how to develop this method, see “Developing the

selectionProcedures Method” on page 4-22.
4-9

Developing the Configuration Tool Communication Object

Developing the supports Method
Developing the supports Method

You must develop the supports [incr Tcl] method. This method indicates

whether or not a specified functionality is supported. The configuration tool

repeatedly invokes this method at startup to determine what functionality

this communication object provides and what configuration tool facilities are

needed. When the configuration tool invokes supports, it passes this method

one parameter: a keyword identifying a unit of functionality that the

configuration tool wants to know about. The expected return value is either 0

or 1. The supports method must recognize the following keywords:

receive data Indicates whether or not the communication object supports

the flow of data from the target system to the data server. A return value of 0

disables the Edit Method window’s Direction/system 1-to-system 2 radio

button.

transmit data Indicates whether or not the communication object

supports the flow of data from the data server to the target system. A return

value of 0 disables the Edit Method window’s Direction/system 2-to-system 1

radio button.

access Indicates whether or not the communication object supports the

display and editing of access information. A return value of 1 adds an

“Access” menu item to the main window’s Edit menu.

trigger Indicates whether or not the communication object supports the

display and editing of system-specific trigger information. A return value of 1

adds a system-specific trigger panel to the configuration tool’s Trigger

window.

trigger focus Indicates whether or not the communication object supports

an Edit Mapping window focus policy. A return value of 1 allows a branch in

the appropriate Edit Mapping window to be shown in a highlighted color.

receive spooling Indicates whether or not the data server’s

communication object supports the spooling of data received from the target

system. A return value of 0 disables a spooling item on the main window’s

Edit/Spooling cascade menu.

transmit spooling Indicates whether or not the data server’s

communication object supports the spooling of data sent to the target

system. A return value of 0 disables a spooling item on the main window’s

Edit/Spooling cascade menu.
4-10

Developing the Configuration Tool Communication Object

Developing the supports Method
dynamic name space Indicates whether or not the communication object

supports a changing (dynamic) name space. A return value of 1 causes the

configuration tool to check for new and deleted nodes when getting the

children of a node.

name space loading Indicates whether or not the communication object

supports the manual loading of name-space information. A return value of 1

adds a “Load Name-space” menu item to the main window’s Control menu.

selection procedures Indicates whether or not the communication object

supports dynamic mapping. A return value of 0 dims the Select checkbox in

the Edit Mapping window.

All unrecognized keywords should cause the supports method to return 0,

which means the unrecognized unit of functionality is not supported.

The following example of a supports method shows that the communication

object can receive data from and transmit data to the target system, and can

spool data sent to the target system.

Example method supports args {

set l [llength $args]

if `keyword’ is omitted, return a list of
recognized keywords
if {$l == 0} {

return [list “receive data” “transmit data” “access” \
“trigger” “trigger focus” “receive spooling” \
“transmit spooling” “dynamic name space” \
“name space loading” “selection procedures”]

else if `keyword’ is present
} elseif {$l == 1} {

set k [lindex $args 0]
switch $k {

“receive data” {return 1}
“transmit data” {return 1}

“access” {return 0}
“trigger” {return 0}

“trigger focus” {return 0}
“receive spooling” {return 0}

“transmit spooling” {return 1}
“dynamic name space” {return 0}
“name space loading” {return 0}

“selection procedures” {return 0}
default {if {$debug} \

{error “Unrecognized keyword: $k”}}
}

else more than one argument has been supplied, error
} else {

utlArgEnd
}

return 0
}

4-11

Developing the Configuration Tool Communication Object

Developing the list2path Method
Developing the list2path Method

You must develop the list2path [incr Tcl] method. This method converts a

Tcl list into a path string specification. A similar method can optionally be

developed for the data server (see “Developing the list2path Method” on page

3-16).

The syntax of the path string specification should be appropriate for the type

of target system. For example, if the type of target system is Agilent

Technolgies’ RTAP product, path specifications would use the same syntax as

RTAP’s symbolic database addressing.

The configuration tool invokes the list2path method to convert Tcl lists to

ordinary path string specifications. The configuration tool displays the paths

to the end user as ordinary path strings but performs all computations on

paths when they are encoded as Tcl lists.

The list2path method must implement exactly the opposite conversions that

are implemented in the path2list method.

When the configuration tool invokes list2path, it passes this method one

parameter: the Tcl list to be converted to a path string specification. It

expects the list2path method to return the resulting path string

specification.

The following example of a list2path method assumes that the path string

syntax is similar to that used by the UNIX file system; that is, item names

separated by solidus characters (/).

Example method list2path p {
return utlList2Path $p

}

4-12

Developing the Configuration Tool Communication Object

Developing the path2list Method
Developing the path2list Method

You must develop the path2list [incr Tcl] method. This method converts a

path specification into a Tcl list.

The configuration tool invokes path2list to convert ordinary path string

specifications to paths expressed as Tcl lists. This method must implement

exactly the opposite conversions that are implemented in the list2path

method.

When the configuration tool invokes path2list, it passes this method one

parameter: the path string to be converted to a Tcl list. It expects the

path2list method to return the resulting Tcl list.

The following example of a path2list method assumes that the path string

syntax is similar to that used by the UNIX file system; that is, item names

separated by solidus characters (/).

Example method path2list p {
return utlPath2List $p

}

4-13

Developing the Configuration Tool Communication Object

Developing the options Method
Developing the options Method

You must develop the options [incr Tcl] method. This method gets or sets the

command-line option keywords supported by the communication object. A

similar method can optionally be developed for the data server (see

“Developing the options Method” on page 3-18).

When starting the configuration tool, you can type in command-line options

on your operating system’s command line; for example, -file <name>.

Command-line option keywords, -file in this example, distinguish one

command-line option from another.

The configuration tool invokes options up to two times during startup. The

first invocation is to get the list of default option keywords supported by the

communication object. If any of those keywords are also used by another

communication object or by the configuration tool’s core, this method is

invoked a second time to rename those keywords.

When the configuration tool invokes options the first time, it does not pass

in any parameters. The data server expects the options method to return a

Tcl list of default command-line option keywords. When the configuration

tool invokes options the second time, it passes in one parameter: a Tcl list

with the new (possibly changed) names for the communication object’s

command-line option keywords. The data server expects the options

method to return a Tcl list of these new command-line option keywords. The

number of items that the configuration tool includes in this Tcl list will

always equal the number of items that were returned by the configuration

tool’s first invocation of the options method.

The following example of an options method assumes that the

communication object supports two command-line options: -option1 name

(an option with one argument) and -option2 (an option with no arguments).

Example method options {args} {
if {[llength $args] > 0} {

set optkeys [lindex $args 0]
if {[llength $optkeys] == 2} {

lassign $optkeys option1Keyword option2Keyword
}

}

Return the current command-line option keywords.
return [list $option1Keyword option2Keyword]

}

4-14

Developing the Configuration Tool Communication Object

Developing the consumeOptions Method
Developing the consumeOptions Method

You must develop the consumeOptions [incr Tcl] method. This method

parses and consumes the command-line options contained in a specified

global variable. A similar method can optionally be developed for the data

server (see “Developing the consumeOptions Method” on page 3-19).

The configuration tool invokes this method during startup to provide the

communication object with an opportunity to parse its command-line options

in the configuration tool command line.

At startup, the configuration tool invokes this method, passing it one

parameter: the name of the global variable containing the program’s

command-line options as a Tcl list. This method should examine the list and

remove any options that apply to the communication object. All

unrecognized options should be left untouched since the configuration tool

passes the resulting list to the other communication object, then consumes

all command-line options supported by the core. If any command-line

options remain after this, the configuration tool reports a usage error and

exits.

To parse for and remove recognized command-line options, use the

utlGetArg utility (see “utlGetArg, utlPeekArg, utlArgEnd” on page 8-43). You

may use the utlPeekArg utility to examine, but not remove, a command-line

option that the configuration tool’s core supports and will eventually remove.

In the following example, the consumeOptions method parses and

consumes the options supported in the example for the options method.

Example method consumeOptions {varName} {
upvar $varName args

Fetch command-line options.
set opt1 [utlGetArg $option1Keyword {default value}]
set opt2 [utlGetArg $option2Keyword]

}

4-15

Developing the Configuration Tool Communication Object

Developing the usage Method
Developing the usage Method

You must develop the usage [incr Tcl] method. This method returns the text

for a command-line usage message. The configuration tool invokes this

method whenever command-line usage errors are detected. The

configuration tool uses the information returned by this method to compose

and print a human-readable usage message. A similar method can optionally

be developed for the data server (see “Developing the usage Method” on page

3-20).

The returned value is a Tcl list with one entry per command-line option. Each

entry is itself a list with two elements: the option string and an English

explanation of the option. If the English explanation will not fit on one line,

you may indent the text by inserting new-line characters and space

characters. The configuration tool converts all new-line characters followed

by space characters in the text into a single space character.

In the following example, the usage method returns the text in the example

for the options method.

Example method usage {} {
return “

{{\[$option1Keyword <name>]} {An option with a
parameter. Feel free to run this description over
multiple lines.}}

{{\[$option2Keyword]} {A flag option.}}”
}

4-16

Developing the Configuration Tool Communication Object

Developing the open Method
Developing the open Method

You must develop the open [incr Tcl] method. This method establishes a

connection between the configuration tool and the target system. A similar

method can optionally be developed for the data server (see “Developing the

open Method” on page 3-21).

The configuration tool invokes the open method during startup. When the

configuration tool invokes open, it passes this method zero or more optional

parameters. These parameters influence how the connection is opened.

• The -configDir <name> option sets the configuration directory to

<name>, which is the full directory path name to the current object’s

configuration directory.

• The -debug option specifies that the communication object should print

debug messages to stderr. This option can be useful to communication

object authors for debugging.

• The -stub option specifies that the communication object should fake the

connection to the target system. This can be useful for testing.

• The -verbose option specifies that the communication object should

print status messages to stderr. This option can be useful to end users for

debugging.

Example method open args {

global argv0 \
env

fetch optional parameters
set config [utlGetArg “-configDir” “”]
set debug [utlGetArg “-debug”]
set stub [utlGetArg “-stub”]
set verbose [utlGetArg “-verbose”]
utlArgEnd

if {$debug} {puts stderr “DEBUG: $this open $args”}

if {$verbose} {puts -nonewline stderr “[file tail $argv0]: \
$this object connecting to xxx...”}

< connect, or open a connection, to target system here >

if {$verbose} {puts stderr “ done”}
}

4-17

Developing the Configuration Tool Communication Object

Developing the loadNameSpace Method
Developing the loadNameSpace Method

You can optionally develop the loadNameSpace Tcl method. This method

starts the transfer of name space data from the target system to the

configuration tool, then returns without waiting for the transfer to complete.

This name space data appears in one view of the configuration tool’s

Edit Mapping window.

If you don’t need to explicitly load name space data, you can disable the

name space loading functionality for the target system by setting the name

space loading flag in the supports method to 0 (see “Developing the

supports Method” on page 4-10). With this flag set to 0, you don’t need to

define this method and you may skip the rest of this section.

If you need to explicitly load name space data, you can enable name space

loading functionality for the target system by setting the name space loading

flag in the supports method to 1. With this flag set to 1, you must supply the

configuration tool with a loadNameSpace method. The configuration tool

invokes this method when the end user chooses the Load Name Space menu

item from the main window’s Control menu.

The configuration tool invokes this method whenever it needs to initiate a

name space load operation. The configuration tool passes two optional

parameters to this method. The optional parameter -command <cmd>

specifies the Tcl command to execute after the transfer is complete. The

optional parameter -statusCommand <scmd> specifies the Tcl command to

periodically execute while the transfer is in progress, which updates the

Status window.

For the -statusCommand option, all occurrences of %message in the Tcl

script <scmd> must be replaced by a status message just prior to the

execution of <scmd>.

For the -command option, all occurrences of %error in the Tcl script <cmd>

must be replaced by 0 if no errors occurred and 1 if errors occurred, just

prior to the execution of <cmd>. If errors occurred, all occurrences of

%message in <cmd> must be replaced by the error message text just prior to

the execution of <cmd>.
4-18

Developing the Configuration Tool Communication Object

Developing the loadNameSpace Method
Example method loadNameSpace args {

fetch optional parameters
set cmd [utlGetArg “-command” ““]
set scmd [utlGetArg “-statusCommand” ““]
utlArgEnd

if {$debug} {puts stderr “DEBUG: $this loadNameSpace $args”}
< start background load here >

}

the background name space loading code should run this
code periodically
proc loadNameSpaceStatus {} {

if {< an error occurs here > && ![utlIsNull $cmd]} {
set error 1
set message < my error message here >

replace all occurrences of %error and %message
regsub -all “%error” $cmd \

[utlQuote [utlQuote -backSlash $error]] rcmd
regsub -all “%message” $rcmd \

[utlQuote [utlQuote -backSlash $message]] rcmd
uplevel #0 $rcmd

}

if {![utlIsNull $scmd]} {
set message < my status message here >

regsub -all “%message” $scmd \
[utlQuote [utlQuote -backSlash $message]] rcmd

uplevel #0 $rcmd
}

}

when the background name space loading code is done,
it should run this code
proc loadNameSpaceDone {} {

if {![utlIsNull $cmd]} {
set error 0
set message ““

replace all occurrences of %error and %message
regsub -all “%error” $cmd \

[utlQuote [utlQuote -backSlash $error]] rcmd
regsub -all “%message” $rcmd \

[utlQuote [utlQuote -backSlash $message]] rcmd
uplevel #0 $rcmd

}

}

4-19

Developing the Configuration Tool Communication Object

Developing the abortNameSpaceLoad Method
Developing the abortNameSpaceLoad Method

You can optionally develop the abortNameSpaceLoad Tcl method. This

method aborts the transfer of name space data previously started by the

loadNameSpace method.

If the loadNameSpace method is defined, this method must also be defined.

If the loadNameSpace method is not defined, you do not need to define this

method.

The configuration tool invokes the abortNameSpaceLoad method when the

end user clicks on the Cancel button in the Name Space Load Status window.

The configuration tool automatically created the Name Space Load Status

window when it invoked the loadNameSpace method.

Example method abortNameSpaceLoad {} {
if {$debug} {puts stderr “DEBUG: $this abortNameSpaceLoad”}
< abort name-space load operation here >

}

4-20

Developing the Configuration Tool Communication Object

Developing the getChildren Method
Developing the getChildren Method

You must develop the getChildren [incr Tcl] method. This method returns

the names of children under a specified node for the target system’s name

space.

The configuration tool invokes this method whenever it needs to get the

names of children nodes. When the configuration tool invokes getChildren,

it passes this method the full path name of the node (as a Tcl list) whose child

names are wanted. This method should return a Tcl list of child names that

appear directly under this node. The returned child names should not include

any path information.

The optional parameter -filter <pattern> specifies a pattern that filters child

names. Only child names that match <pattern> should be returned. If this

parameter is omitted, all child names should be returned.

By definition, the root node of the name space tree is the empty string.

The configuration tool assumes that the target system’s name space can be

represented with a tree structure. For target systems with a flat, linear

address space, simply make all the system’s data items children of the root

node. The end user can use the configuration tool’s built-in filtering facilities

to make this list manageable.

Example method getChildren args {

fetch optional parameter
set fil [utlGetArg “-filter” “*”]

fetch required parameter
set n [utlGetArg]
utlArgEnd

if {$debug} {puts stderr “DEBUG: $this getChildren $args”}

return < compose a Tcl list of the nodes under `$n’ matching
`$fil’ here >

}

4-21

Developing the Configuration Tool Communication Object

Developing the selectionProcedures Method
Developing the selectionProcedures Method

If you want your communication object to support dynamic mapping, you

must develop the selectionProcedures [incr Tcl] method. This method gets,

deletes, executes or creates selection procedures. The selectionProcedures

method has four modes of operation.

1. Gets

In its first mode, selectionProcedures takes no arguments and returns a list

of selection procedures supported by the source communication object,

which includes selection procedures originating in both the communication

object and the data server.

The returned list contains three elements: the procedure name, procedure

arguments, and the application programming interface (API) version of the

selection procedure. For the E.02.20 version of Enterprise Link, the API

version should always be 1.

Example if {[llength $args] == 0} {
set rc {}
foreach proc_name [info procs {xxx_select_*}] {

regsub "^xxx_select_(.*$)" $proc_name {\1} p_name

--- fetch procedure's API version number ---
if {[info exists select_api_versions($p_name)]} {

set p_version $select_api_versions($p_name)
} else {

set p_version 0 ;# version is unknown
}

--- properly convert default selection procedure arguments ---
set p_args {}
foreach arg_name [info args $proc_name] {

if {[info default $proc_name $arg_name arg_value]} {
lappend proc_args [list $arg_name $arg_value]

} else {
lappend proc_args $arg_name

}
}

lappend rc [list $p_name $p_args $p_version]
}

return $rc
}

4-22

Developing the Configuration Tool Communication Object

Developing the selectionProcedures Method
2. Deletes

In its second mode of operation, the selectionProcedures method takes any

number of selection procedure names as arguments and returns a Tcl list of

the names of deleted procedures.

Example set rc {}
foreach arg $args {

set arg_length [llength $arg]

if {$arg_length == 1} {
set p_name [lindex $arg 0]

rename xxx_select_$p_name {}

unset select_api_versions($p_name)
if {[array size select_api_versions] == 0} {

unset select_api_versions
}

lappend rc $p_name
}

}

3. Executes

In its third mode of operation, the selectionProcedures method takes any

number of two-item arguments. The first list item is a selection procedure

name and the second is a list of that selection procedure’s arguments.

This third mode of selectionProcedures returns a Tcl list of zero or more

three-item lists. The first item is the selection procedure executed, along with

the selection procedure’s arguments. The second item is the error code

generated from the execution. The third item is a list of selected source

paths, with each path in the form of a Tcl list. If the procedure execution is

successful, the item in the list representing the error code will be empty and

the last item will contain selected source paths. If the procedure execution

was unsuccessful, the error code will appear in the list and the following item

representing source paths will be empty.
4-23

Developing the Configuration Tool Communication Object

Developing the selectionProcedures Method
Example set rc {}
foreach arg $args {

set arg_length [llength $arg]

--- just an execute-procedure request? ---
if {$arg_length == 2} {

set p_name [lindex $arg 0]
set p_args [lindex $arg 1]

--- set defined arguments ---
set el_args [list $this]

set sources {}

if {[info exists select_api_versions($p_name)]} {

--- if no errors occur, "err_code" item is empty ---
set err_code {}

set api_version $select_api_versions($p_name)

--- invoke selection procedure appropriately ---
switch -- $api_version {

"0" -
"1" {if {[catch {set sources [eval xxx_select_$p_name \
$el_args $p_args]}]} {

global errorInfo errorCode
set err_code [list $errorInfo $errorCode]
}

}

default {set err_code [utlNls "API version mismatch error: \
selection-procedure `%0' requires unsupported API version #%1" \
$p_name api_version]
}

} else {
set err_code [utlNls "Undefined selection-procedure \
(procedure=%0)" $p_name]

}

lappend rc [list $arg $err_code $sources]
}

}

4. Creates

In its fourth mode, the selectionProcedures method takes any number of

arguments in a four-item list. The first item is a selection procedure name.

The second item is a list of that selection procedure’s arguments. The third

item is the body text defining the selection procedure, and the fourth item is

the application programming interface (API) version of the selection

procedure. In the E.02.20 version of Enterprise Link, the API version should

always be 1.

This fourth mode of the selectionProcedures method returns a Tcl list of

zero or more procedure names.
4-24

Developing the Configuration Tool Communication Object

Developing the selectionProcedures Method
Example set rc {}
foreach arg $args {

set arg_length [llength $arg]

if {$arg_length == 4} {
set p_name [lindex $arg 0]
set p_args [lindex $arg 1]
set p_body [lindex $arg 2]
set p_vers [lindex $arg 3]

--is this an unsupported version of the selection-procedure API? --
if {$p_vers > 1} {

error [utlNls "Unsupported version of the selection-procedure \
API (procedure=%0 version=%1)" $p_name $p_vers]

}

proc xxx_select_$p_name $p_args $p_body
set select_api_versions($p_name) $p_vers
lappend rc $p_name

}
return $rc

}

4-25

Developing the Configuration Tool Communication Object

Creating a Message Catalog File
Creating a Message Catalog File

To support localization, the configuration tool supports the concept of

message catalog files. These files allow you to easily change displayed text.

Message catalog files are simply Tcl scripts stored under the directory

<environment variable ELROOT>/lib/nls/msg/C

These Tcl scripts assign character strings to elements of the global Tcl array

utl_msg_cat. This array is indexed by either a default string or a message

catalog message ID. Short character strings index into the utl_msg_cat array

with a default string, while very long character strings use a catalog

message ID.

Rather than accessing this array directly, internationalized Tcl programs use

the utlNls utility to look up a message (see “utlNls” on page 8-54). This utility

is passed either the default string or catalog message ID, and zero or more

optional parameters. This utility returns the localized and formatted string.

If the utlNls utility cannot find the specified string in the global utl_msg_cat

array, this utility simply returns the supplied default string or message

catalog ID (as a string). This utility also provides limited string formatting

capabilities.

Before Tcl message catalog files can be used, they must be loaded. A Tcl

message catalog file is loaded by sourcing it. All Tcl message catalog files

reside in the directory specified by the global Tcl variable

el_app_msg_cat_dir. A Tcl message catalog file should only be loaded if this

global Tcl variable exists. The following example shows how to load a Tcl

message catalog file. The Tcl code shown in this example should appear near

the beginning of the first file that uses the messages defined in this message

catalog file.

Example # load message catalog file
if {[info exists el_app_msg_cat_dir]} {

source ${el_app_msg_cat_dir}/my.msgcat
}

4-26

5

5 Developing an Access Window

Developing an Access Window
This chapter describes how to develop the optional target-system access

window for the Agilent Technologies Enterprise Link configuration tool.

The configuration tool uses access windows to provide the end user with the

ability to specify system-specific access information. This includes

connection and startup information that is unique to the target system.

Access windows are optional. If the target system does not have any

system-specific access information, you can disable access window

functionality for the target system by setting the Access flag in the supports

method to 0 (see “yourIntfClass::supports” on page 7-43). With this flag set to

0, you do not need to define any access window procedures for the target

system, and you may skip the rest of this chapter.

If the system needs system-specific access information, you must enable

access window functionality for the target system by setting the Access flag in

the supports method to 1. When this flag is set to 1, you must supply the

configuration tool with a collection of access window procedures. When the

configuration tool is running, it will call these access window procedures as

needed.

The configuration tool supports up to one access window for each type of

target system. Access configuration data is maintained on a per

configuration-object basis.
5-2

Developing an Access Window
Access Window Data Flow

The following illustration shows how data flows between the access

window’s Tk widgets, data variables that you define, and configuration

repository. In this illustration, the target-system type’s short name is yourIntf.
5-3

Developing an Access Window
Access Window Procedures

The following procedures are typically defined for access windows.

Some of these procedures must be defined since they are called by the

configuration tool. Others are called by the communication object and are

needed to create a working access window.

Procedure Name Description Page

yourIntfAccessCfgRest Creates and initializes access window variables. 5-8

yourIntfAccessCfgLoad Loads access window configuration data. 5-9

yourIntfAccessCfgSave Saves access window configuration data. 5-11

yourIntfAccessCfgPrint Prints access window configuration data to a file. 5-13

yourIntfAccessGui Creates and displays the access window. 5-15

yourIntfAccessApplyHan
Handles user clicks of the access window’s Apply
button.

5-19

yourIntfAccessAppObjNameVHan
Handles when the currently open configured object
changes.

5-21
5-4

Developing an Access Window
The following illustration shows the interaction between the access window

procedures, configuration file, configuration tool’s core, and output file.
5-5

Developing an Access Window
To develop a system-specific access window, follow these steps:

Step 1: Identify and define the connection and startup information required

for the type of target system.

For example, this may include a host computer name, a user login name, and

a user password.

Step 2: Assign a variable name to each of the items identified in the previous

step.

To avoid name collisions with variables defined by the configuration tool and

its associated libraries, prefix each name with the target-system type’s short

name. Also, to avoid name collisions with other variables associated with the

target-system type, follow the short name prefix with the string _access.

For example, if the target-system type’s short name is MYSYS and if two

variables are required, the variables should have the following names:

MYSYS_access_variable_one
MYSYS_access_variable_two

Step 3: Develop four Tcl procedures to initialize, load, store, and print the

data defined in the previous step.

For example, if the target-system type’s short name is MYSYS, the procedures

should have the following names:

MYSYSAccessCfgReset
MYSYSAccessCfgLoad
MYSYSAccessCfgSave
MYSYSAccessCfgPrint

For a description of how to develop these procedures, see

“Developing the yourIntfAccessCfgReset Procedure” on page 5-8,

“Developing the yourIntfAccessCfgLoad Procedure” on page 5-9,

“Developing the yourIntfAccessCfgSave Procedure” on page 5-11, and

“Developing the yourIntfAccessCfgPrint Procedure” on page 5-13.
5-6

Developing an Access Window
Step 4: Lay out the access window.

The following shows a sample access window built with Tk widgets.

Step 5: Develop a Tcl procedure to create and display the access window.

For example, if the target system type’s short name is MYSYS, the procedure

should have the following name:

MYSYSAccessGui

For a description of how to develop this procedure, see “Developing the

yourIntfAccessGui Procedure” on page 5-15.

Step 6: Develop Tcl procedures to handle when the end user clicks on the

access window’s Apply button or when the global variable

el_app_obj_name changes value.

For example, if the target-system type’s short name is MYSYS, the procedures

should have the following names:

MYSYSAccessApplyHan
MYSYSAccessAppObjNameVHan

For a description of how to develop these procedures, see

“Developing the yourIntfAccessApplyHan Procedure” on page 5-19 and

“Developing the yourIntfAccessAppObj- NameVHan Procedure” on page 5-21.
5-7

Developing an Access Window

Developing the yourIntfAccessCfgReset Procedure
Developing the yourIntfAccessCfgReset Procedure

You must develop the yourIntfAccessCfgReset Tcl procedure. This

procedure creates then sets the access window’s variables to their default

state. These variables must be global for Tk’s widgets to be able to access

them.

The configuration tool calls this procedure during startup to create and

initialize the global variables needed by the target system’s access window.

In addition to creating the access window’s data variables that you defined,

this procedure must create and initialize a configuration file revision variable.

The value of this variable represents the file format used for access

configuration data that is stored in the configuration repository. This variable

will be saved whenever the access window’s configuration is saved, and

checked whenever the access window’s configuration is loaded.

The following example of an yourIntfAccessCfgReset procedure assumes

the access window requires two variables: yourIntf_access_variable_one and

yourIntf_access_variable_two.

Example proc yourIntfAccessCfgReset {} {
global yourIntf_access_config_app_rev \

yourIntf_access_variable_one \
yourIntf_access_variable_two

set access config-file-format revision number
set yourIntf_access_config_app_rev “1”

initialize window variables
set yourIntf_access_variable_one <default value>
set yourIntf_access_variable_two <default value>

}

5-8

Developing an Access Window

Developing the yourIntfAccessCfgLoad Procedure
Developing the yourIntfAccessCfgLoad Procedure

You must develop the yourIntfAccessCfgLoad Tcl procedure. This

procedure loads the access configuration stored in the access configuration

repository. The configuration data is stored in a file name specified by the

global Tcl variable yourIntf_access_cfg_file_name. This file resides in the base

directory specified by the global Tcl variable el_app_obj_name under the

subdirectory specified by the global Tcl variable el_app_cfg_subdir. All of these

global variables are defined and set by the core component of the

configuration tool.

The configuration tool does not directly call this procedure. It is called

indirectly when the configuration tool calls yourIntfAccessGui and

yourIntfAccessCfgPrint. It is also called when the end user clicks on the

access window’s Reset button. These causal relationships are set up in the

yourIntfAccessGui procedure.

This procedure must be able to read the configuration file written by

yourIntfAccessCfgSave. Since yourIntfAccessCfgSave writes the

configuration data to the repository in the form of a Tcl script, all this

procedure has to do is source that script.

In case the configuration file does not exist, first call

yourIntfAccessCfgReset to provide a default access configuration before

calling yourIntfAccessCfgLoad. This also ensures that the access window’s

Reset button properly resets the displayed window data when there is no

configuration file.

To verify that the contents of the just-read configuration file are valid, call the

utlChkCfgFileRev utility (see “utlChkCfgFileRev” on page 8-21).

The following example of an yourIntfAccessCfgLoad procedure assumes

the access window requires two variables: yourIntf_access_variable_one and

yourIntf_access_variable_two.
5-9

Developing an Access Window

Developing the yourIntfAccessCfgLoad Procedure
Example proc yourIntfAccessCfgLoad {} {
global el_app_cfg_subdir \

el_app_obj_name \
yourIntf_access_cfg_file_name \
yourIntf_access_config_app_rev \
yourIntf_access_variable_one \
yourIntf_access_variable_two

compose file name
set fname “${el_app_obj_name}${el_app_cfg_subdir}/\
$yourIntf_access_cfg_file_name”

if the specified config file does not exist or is empty
if {([file exists $fname] != 1) || ([file size $fname] == 0)} {

use the default values
yourIntfAccessCfgReset
return

}

load the access configuration
set _prefix “yourIntf_access_”
source $fname

utlChkCfgFileRev “yourIntf_access_config_rev” \
$yourIntf_access_config_app_rev $fname

}

5-10

Developing an Access Window

Developing the yourIntfAccessCfgSave Procedure
Developing the yourIntfAccessCfgSave Procedure

You must develop the yourIntfAccessCfgSave Tcl procedure. This

procedure saves the access configuration to the access configuration

repository. The configuration data is stored in a file name specified by the

global Tcl variable yourIntf_access_cfg_file_name. This file resides in the base

directory specified by the global Tcl variable el_app_obj_name under the

subdirectory specified by the global Tcl variable el_app_cfg_subdir. All of these

global variables are defined and set by the core component of the

configuration tool.

The configuration tool does not directly call this procedure. It is called when

the end user clicks on the access window’s Apply button. This causal

relationship is set up in the yourIntfAccessGui procedure.

This procedure must write a configuration file that can be read by the

yourIntfAccessCfgLoad procedure. This procedure normally writes the

configuration data in the form of a Tcl script.

Open the configuration file using the utlOpen utility and close using the

utlClose utility (see “utlOpen, utlClose” on page 8-55). These utilities

provide transparent support for configuration file versioning and safe file

writes.

The following shows the usual layout of an access configuration file:

Example # “Enterprise Link yourIntf-access Configuration File”

if {![info exists _prefix]} {set _prefix “yourIntf_Access_”}

set ${_prefix}variables “${_prefix}config_rev ${_prefix}<name1> \
${_prefix}<name2> ...”

set ${_prefix}config_rev 1
set ${_prefix}<name1> {<my value1>}
set ${_prefix}<name2> {<my value2>}
: : :
: : :

EOF

where

_prefix Allows configuration file loading procedures to attach a custom

prefix string to the variable names loaded.

<name#> The name of an access window variable.

<my value#> The current value of an access window variable.
5-11

Developing an Access Window

Developing the yourIntfAccessCfgSave Procedure
The following example of an yourIntfAccessCfgSave procedure assumes

the access window requires two variables: yourIntf_access_variable_one and

yourIntf_access_variable_two.

Example proc yourIntfAccessCfgSave {} {
global el_app_cfg_subdir \

el_app_obj_name \
el_prod_name \
yourIntf_access_cfg_file_name \
yourIntf_access_config_app_rev \
yourIntf_access_variable_one \
yourIntf_access_variable_two

compose file name
set fname “${el_app_obj_name}${el_app_cfg_subdir}/\
$yourIntf_access_cfg_file_name”

open the output file
set f [utlOpen $fname w]

puts $f “# $el_prod_name yourIntf-access Configuration File”
puts $f ““
puts $f “if {!\[info exists _prefix\]} \

{set _prefix \”yourIntf_access_\”}”
puts $f ““
puts $f “set \${_prefix}variables \”\${_prefix}config_rev \

\${_prefix}variable_one \${_prefix}variable_two\””
puts $f ““

save the access configuration
puts $f “set \${_prefix}config_rev \

[list $yourIntf_access_config_app_rev]”
puts $f “set \${_prefix}variable_one \

[list $yourIntf_access_variable_one]”
puts $f “set \${_prefix}variable_two \

[list $yourIntf_access_variable_two]”
puts $f ““

puts $f “# EOF”

utlClose $f
}

5-12

Developing an Access Window

Developing the yourIntfAccessCfgPrint Procedure
Developing the yourIntfAccessCfgPrint Procedure

You must develop the yourIntfAccessCfgPrint Tcl procedure. This

procedure writes human-readable documentation about the current access

configuration to a specified file descriptor. The written text should be easy to

understand and complete.

The configuration tool calls this procedure whenever the end user chooses

the Print menu item from the File menu in the configuration tool’s main

window.

When the configuration tool calls this procedure, the procedure passes to the

configuration tool one parameter: an open file descriptor that all output

should be written to. This procedure should only write to this file descriptor,

it should not read from it nor close it.

To construct what is written, use the table formatting utilities

utlTableHeader, utlTableRow, and utlTablePut (see “utlTableHeader,

utlTableRow, utlTablePut” on page 8-71). With these utilities, the final output

should be a table that looks something like the following:

where

<name#> The name of an access window variable.

<value#> The current value of an access window variable.

Empty lines, as shown in the example table above, may be inserted to

separate related configuration parameters. This can improve the generated

documentation’s readability, especially for tables with many rows.

The following example of an yourIntfAccessCfgPrint procedure assumes

that the access window requires two variables: yourIntf_access_variable_one

and yourIntf_access_variable_two.

yourIntf-access Configuration

Item Value

<name1>
<name2>

<value1>
<value2>

<name3>
:

<value3>
:

5-13

Developing an Access Window

Developing the yourIntfAccessCfgPrint Procedure
Example proc yourIntfAccessCfgPrint f {
global yourIntf_access_variable_one \

yourIntf_access_variable_two

load yourIntf-access configuration
yourIntfAccessCfgLoad

generate yourIntf-access documentation
utlTableHeader $f -title “yourIntf-access Configuration” \

“Item” “Value”

utlTableRow $f “Var One” $yourIntf_access_variable_one
utlTableRow $f “Var Two” $yourIntf_access_variable_two
utlTableRow $f

utlTablePut $f -indent 2 -justify {right left}
}

5-14

Developing an Access Window

Developing the yourIntfAccessGui Procedure
Developing the yourIntfAccessGui Procedure

You must develop the yourIntfAccessGui Tcl procedure. This procedure

creates, configures, and displays the access window.

The configuration tool calls yourIntfAccessGui whenever the end user

chooses the yourIntf Access... menu item from the Edit menu in the

configuration tool’s main window.

Before you can write the yourIntfAccessGui procedure, you must lay out

the access window’s interface. Once you have done this, you must prepare

your layout for use with Tk. The window’s labels will be built using Tk label

widgets. The window’s text entry widgets will be built using Tk entry

widgets. The window’s buttons will be built using Tk button widgets. All of

these widgets must be grouped together using Tk frame widgets. Due to the

way the Tk pack command works, each frame widget must enclose only rows

or columns of Tk widgets. The following figure shows a sample layout for

access window frames.

When the configuration tool calls this procedure, it passes in one parameter:

the name to use for the access window’s top-level window. If

yourIntfAccessGui finds that this window already exists, it must simply

make the window visible by calling the utlMkPanelVisible utility (see

“utlMkPanelPrologue, utlMkPanelEpilogue, utlMkPanelVisible” on page

8-52).

window
xxx-access Configuration

menubar_frmenubar_fr

work_fr

apply_fr

var_one_fr

var_two_fr

Variable One: ###################

Variable One: ###################

File Help

Apply Reset Cancel
5-15

Developing an Access Window

Developing the yourIntfAccessGui Procedure
Since creating a window is relatively slow, call the utlBusyCursor utility

before actually creating the window and the utlIdleCursor utility

afterwards (see “utlBusyCursor, utlIdleCursor” on page 8-17). These utilities

temporarily display the end user’s mouse cursor as an hourglass sprite.

To create and configure the window’s top-level window, call the

utlMkPanelPrologue utility. After calling this utility, the variable $self is

defined and the variable $p is modified. The $self variable is the handle of the

newly created top-level window, while the $p variable is the prefix required

for all of the window’s widgets.

To conclude the creation of the top-level window, call the

utlMkPanelEpilogue utility. This utility makes the window resizable, then

positions and displays it.

Note that the utlMkPanelPrologue and utlMkPanelEpilogue utilities

ensure that if anything goes wrong during window construction, that all

widgets associated with the partially created window are automatically

destroyed.

To process all of the window’s widgets, call the utlPrepareWidget utility

(see “utlPrepareWidget” on page 8-60). This utility ensures that the

appearance and behavior of all widgets in the configuration tool are

consistent. For entry and text widgets that are output only, use the utility’s

-noEntry option to ensure the widget’s background color is appropriately

set. When a check box or radio button widget controls whether or not an

entry widget is enabled, use the utility’s -autoSelect <list> option to ensure

that the check box and radio button widgets automatically become enabled

when the end user clicks a mouse button on the entry widget. The <list>

option argument must be a Tcl list of all check box and radio button widgets

that affect the state of the entry widget.

To arrange for focus traversal of the window’s entry widgets, call the

utlFocusTraversal utility (see “utlFocusTraversal” on page 8-39). Focus

traversal occurs when an end user first selects a text-entry widget, then types

the <Return> key. Typing the <Return> key causes the next entry widget to

be selected for end user input.

The following example of a yourIntfAccessGui procedure assumes that the

access window requires two variables: yourIntf_access_variable_one and

yourIntf_access_variable_two.
5-16

Developing an Access Window

Developing the yourIntfAccessGui Procedure
Example proc yourIntfAccessGui p {
global el_app_obj_name \

yourIntf_access_unotes_file_name \
yourIntf_access_variable_one \
yourIntf_access_variable_two

utlBusyCursor

if the window already exists and has children
if {[utlIsPanel $p]}{

utlMkPanelVisible $p
utlIdleCursor
return

}

prepare top-level window
utlMkPanelPrologue p -title “yourIntf-access Configuration” \

-class Access

create frame widgets
frame ${p}menubar_fr -relief raised
frame ${p}work_fr
frame ${p}var_one_fr
frame ${p}var_two_fr
frame ${p}apply_fr
utlPrepareWidget ${p}menubar_fr ${p}work_fr ${p}var_one_fr \

${p}var_two_fr {p}apply_fr

< create the menubar and pull-down menu widgets here >

create variable one widgets
label ${p}var_one_lb -text “Variable One:” -anchor e
entry ${p}var_one_en -width 15 \

-textvariable yourIntf_access_variable_one
utlPrepareWidget ${p}var_one_lb ${p}var_one_en

create variable two widgets
label ${p}var_two_lb -text “Variable Two:” -anchor e
entry ${p}var_two_en -width 15 \

-textvariable yourIntf_access_variable_two
utlPrepareWidget ${p}var_two_lb ${p}var_two_en

setup entry widget traversal chain
utlFocusTraversal ${p}var_one_en ${p}var_two_en

create Apply/Reset/Cancel push button widgets
button ${p}apply_bt -text “Apply” \

-command [list yourIntfAccessApplyHan $self]
button ${p}reset_bt -text “Reset” \

-command [list yourIntfAccessCfgLoad]
button ${p}cancel_bt -text “Cancel” \

-command [list destroy $self]
utlPrepareWidget ${p}apply_bt ${p}reset_bt ${p}cancel_bt

load yourIntf-access config data into window
if {[catch {yourIntfAccessCfgLoad}]} {

global errorInfo errorCode
destroy $self
utlIdleCursor
return -code error -errorinfo $errorInfo \

-errorcode $errorCode $em
}

arrange for this window to update whenever the variable
“el_app_obj_name” changes
trace variable el_app_obj_name w \

[list yourIntfAccessAppObjNameVHan $self]
bind $self <Destroy> “

if {\”%W\” == \”$self\”} {
5-17

Developing an Access Window

Developing the yourIntfAccessGui Procedure
trace vdelete el_app_obj_name w \
{[list yourIntfAccessAppObjNameVHan $self]}

bind $self <Destroy> {}
}

“

< pack widgets together here >

setup menubar
focus ${p}menubar_fr

publish window
utlMkPanelEpilogue $self

utlIdleCursor
}

5-18

Developing an Access Window

Developing the yourIntfAccessApplyHan Procedure
Developing the yourIntfAccessApplyHan Procedure

You must develop the yourIntfAccessApplyHan Tcl procedure. This

procedure checks and then saves the current values of the access

configuration variables to the access configuration repository.

If any invalid access configuration variable values are found, this procedure

reports the error and then returns. In this case, the current values of the

access configuration variables are not saved and the access window remains

mapped, allowing the end user to fix the reported problem. Otherwise, if all

values are found to be valid, the current configuration is saved.

The configuration tool never calls this procedure. Rather, it is called by Tk

whenever the end user clicks on the access window’s Apply button. This

causal relationship is set up in the yourIntfAccessGui procedure. The

yourIntfAccessGui procedure arranges for the name of the access

window’s top-level window to be passed as the first parameter to

yourIntfAccessApplyHan when the causal relationship is set up.

When entry widgets have an associated enable/disable check box widget and

the check box widget is disabled, do not check the current values of the

dependent entry widgets. In this situation, illegal entry widget values are

allowed.

Before saving the end user’s changes, check for these common problems:

 • Empty entry widgets.

 • Numeric entry widgets filled with non-numeric text.

 • Non-numeric entry widgets filled only with numeric text.

 • Invalid combinations of enabled check box widgets.

To detect and report the first and third problem, use the utlChkAlpha utility

(see “utlChkAlpha” on page 8-20). To detect and report the first and second

problem, use the utlChkInt utility (see “utlChkInt” on page 8-23). You’ll have

to detect the last problem yourself and use the Tcl error command to report

the problem to the end user. Be aware that the configuration tool intercepts

errors and displays the error in an Error window.

Once you’ve verified that the current values of the access variables are

correct, save them to the configuration file using yourIntfAccessCfgSave.
5-19

Developing an Access Window

Developing the yourIntfAccessApplyHan Procedure
Since writing to files is relatively slow, call the utlBusyCursor utility before

starting the write and the utlIdleCursor utility after completing it (see

“utlBusyCursor, utlIdleCursor” on page 8-17). These utilities temporarily

display the end user’s mouse cursor as an hourglass sprite.

The following example of a yourIntfAccessApplyHan procedure assumes

that the access window requires two variables: yourIntf_access_variable_one

and yourIntf_access_variable_two.

Example proc yourIntfAccessApplyHan p {
global yourIntf_access_variable_one \

yourIntf_access_variable_two

if {![string match *. $p]} {set p “${p}.”}

check fields...
utlChkAlpha $yourIntf_access_variable_one \

-comment “Expected variable name.” \
[utlWidgetText ${p}var_one_lb]

utlChkAlpha $yourIntf_access_variable_one \
-comment “Expected variable name.” \
[utlWidgetText ${p}var_two_lb]

save the now-validated access configuration
utlBusyCursor
yourIntfAccessCfgSave
utlIdleCursor

}

5-20

Developing an Access Window

Developing the yourIntfAccessAppObj- NameVHan Procedure
Developing the yourIntfAccessAppObj-

NameVHan Procedure

You must develop the yourIntfAccessAppObjNameVHan Tcl procedure.

This procedure handles changes to the value of the global variable

el_app_obj_name. The global variable el_app_obj_name contains the name of the

object currently open for editing. This procedure reloads the access window

with the access configuration associated with the new object.

This procedure is only called when the access window is on display and there

is a change in the object currently open for editing.

The configuration tool does not directly call this procedure. Rather, it is

called by Tcl whenever the end user chooses the Open... menu item from the

File menu in the configuration tool’s main window and opens an object for

editing. This causal relationship is set up in the yourIntfAccessGui

procedure. The yourIntfAccessGui procedure arranges for the name of the

access window’s top-level window to be passed as the first parameter to this

procedure when the causal relationship is set up. Tcl passes this procedure

three more parameters as part of its variable trace handling functionality.

Example proc yourIntfAccessAppObjNameVHan {p name el op} {

if yourIntf-access configuration window does not exist,
bail out
if {![utlIsPanel $p]} {return}

yourIntfAccessCfgLoad
}

5-21

6

6 Developing a Trigger Panel

Developing a Trigger Panel
This chapter describes how to develop the optional system-specific trigger

panel for the Agilent Technologies Enterprise Link configuration tool.

The configuration tool uses trigger panels to provide the end user with the

ability to specify system-specific trigger information. This includes trigger

sources and filters that are unique to the target system. Trigger panels are

part of the configuration tool’s Trigger window—that is, a section of the

Trigger window that provides trigger information for a specific system.

Trigger panels are optional. If the target system does not have any

system-specific trigger information, you can disable trigger panel

functionality for the system by setting the trigger flag in the supports

method to 0 (see “yourIntfClass::supports” on page 7-43). With this flag set to

0, you do not need to define any trigger panel procedures for the target

system, and you may skip the rest of this chapter.

If the target system needs system-specific trigger information, you must

enable trigger panel functionality for the system by setting the trigger flag in

the supports method to 1. When this flag is set to 1, you must supply the

configuration tool with a collection of trigger panel procedures. When the

configuration tool is running, it will call these trigger panel procedures as

needed.

The configuration tool supports up to one trigger panel per type of target

system. Trigger configuration data is maintained on a per-method basis.
6-2

Developing a Trigger Panel
Trigger Panel Data Flow

The following illustration shows how data flows between the trigger panel’s

Tk widgets, data variables that you define, and configuration repository. In

this illustration, the target system type’s short name is yourIntf.
6-3

Developing a Trigger Panel
Trigger Panel Procedures

The following procedures are typically defined for trigger panels.

Many of these procedures must be defined since they are called by the

configuration tool. Others are called by the communication object and are

needed to create a working trigger panel.

Procedure Name Description Page

yourIntfTrigCfgReset Creates and initializes trigger panel variables. 6-10

yourIntfTrigCfgPrint Prints trigger panel configuration data to a file. 6-11

yourIntfTrigGetFocus Gets the current trigger focus. 6-13

yourIntfTrigCreatePanel Creates the trigger panel. 6-14

yourIntfTrigPackPanel Packs the trigger panel widgets together. 6-17

yourIntfTrigIsEnabled Returns whether or not any trigger is enabled. 6-19

yourIntfTrigEscapeKHan Handles user presses of the Escape key. 6-20

yourIntfTrigApplyHan Handles user clicks of the Trigger window’s Apply button. 6-22

yourIntfTrigSync Synchronizes the state of the trigger panel’s widgets. 6-24
6-4

Developing a Trigger Panel
The following illustration shows the interaction between the trigger panel

procedures, configuration tool’s core, and output file.
6-5

Developing a Trigger Panel
To develop a system type-specific trigger panel, follow these steps:

Step 1: Identify and define the trigger sources and trigger filters required for

the type of target system.

To do this, you’ll need to classify the target system type’s orientation. There

are two basic orientations:

1. Systems that asynchronously send the mapped data in messages.

These systems push the data. Enterprise Link typically has little or no

control over which messages are received, when they are received, and in

what order they are received. These systems are message-oriented.

For such systems, the system type-specific trigger conditions usually

specify some type of filtering criteria based on the content of the received

messages—such as a message name, a message field name, or a message

field data value. In theory, the receipt of the message is the trigger, but

filtering criteria may choose to discard the message, pretending that none

was received.

Agilent Technologies’ SAP Communication Object is message-oriented.

2. Systems that allow the mapped data to be pulled from the target system.

These systems are database-oriented.

For such systems, the system type-specific trigger conditions usually

specify some type of event that causes Enterprise Link to get the data.

The event itself is usually an asynchronous event message generated by

the target system—such as a database value-changed event or an

invalid-value alarm. Usually, the data server arranges for the target system

to generate these asynchronous trigger messages by configuring the

target system as appropriate.

Agilent Technologies’ RTAP Communication Object and Oracle

Communication Object are database-oriented.
6-6

Developing a Trigger Panel
Step 2: Assign a variable name to each of the items identified in Step 1.

To avoid name collisions with variables defined by the configuration tool and

its associated libraries, prefix each name with the target system type’s short

name. Also, to avoid name collisions with other variables associated with the

type of target system, follow the short name prefix with the string _trig.

For example, if the target system type’s short name is MYSYS and if two

variables with flags are required, the variables should have the following

names:

MYSYS_trig_variable_one
MYSYS_trig_variable_one_enable
MYSYS_trig_variable_two
MYSYS_trig_variable_two_enable

Step 3: Develop two Tcl procedures to initialize and print the data defined in

Step 1.

For example, if the target system type’s short name is MYSYS, the procedures

should have the following names:

MYSYSTrigCfgReset
MYSYSTrigCfgPrint

For a description of how to develop these procedures, see

“Developing the yourIntfTrigCfgReset Procedure” on page 6-10 and

“Developing the yourIntfTrigCfgPrint Procedure” on page 6-11.

Step 4: Decide if you want to display the current trigger focus on the

Add Mapping window. If you choose to do this, you’ll have to develop

a Tcl procedure that returns the current trigger focus when called.

This procedure is optional.

For example, if the target system type’s short name is MYSYS, the procedure

should have the following name:

MYSYSTrigGetFocus

For a description of how to develop this procedure, see “Developing the

yourIntfTrigGetFocus Procedure” on page 6-13.
6-7

Developing a Trigger Panel
Step 5: Lay out the trigger panel.

The following shows a sample trigger panel built with Tk widgets.

Step 6: Develop Tcl procedures to create and pack the trigger panel.

For example, if the target system type’s short name is MYSYS, the procedures

should have the following names:

MYSYSTrigCreatePanel
MYSYSTrigPackPanel

For a description of how to develop these procedures, see

“Developing the yourIntfTrigCreatePanel Procedure” on page 6-14 and

“Developing the yourIntfTrigPackPanel Procedure” on page 6-17.

Step 7: Develop a Tcl procedure that allows the configuration tool to

determine if any triggers for the target system are enabled. This

procedure is called by the configuration tool to determine whether the

trigger panel should be initially displayed expanded or unexpanded.

For example, if the target system type’s short name is MYSYS, the procedure

should have the following name:

MYSYSTrigIsEnabled

For a description of how to develop this procedure, see “Developing the

yourIntfTrigIsEnabled Procedure” on page 6-19.
6-8

Developing a Trigger Panel
Step 8: Develop Tcl procedures to handle when the end user presses the

Escape key or clicks on the Apply button in the trigger window, or

when the global variable el_app_obj_name changes values.

For example, if the target system type’s short name is MYSYS, the procedures

should have the following names:

MYSYSTrigEscapeKHan
MYSYSTrigApplyHan
MYSYSTrigSync

For a description of how to develop the procedures, see

“Developing the yourIntfTrigEscapeKHan Procedure” on page 6-20,

“Developing the yourIntfTrigApplyHan Procedure” on page 6-22, and

“Developing the yourIntfTrigSync Procedure” on page 6-24.
6-9

Developing a Trigger Panel

Developing the yourIntfTrigCfgReset Procedure
Developing the yourIntfTrigCfgReset Procedure

You must develop the yourIntfTrigCfgReset Tcl procedure. This procedure

creates, then sets the trigger panel variables to their default state. These

variables must be global for Tk’s widgets to be able to access them.

The configuration tool calls this procedure during startup to create and

initialize the global variables needed by the target system type’s trigger panel.

The configuration tool accesses the global variable yourIntf_trig_variables to

determine the names of the variables associated with the target system type’s

trigger panel. Therefore, it is very important for this variable to exist, be

global, and be properly initialized.

The following example of a yourIntfTrigCfgReset procedure assumes that

the Trigger window requires four variables: yourIntf_trig_variable_one,

yourIntf_trig_variable_one_enable, yourIntf_trig_variable_two, and yourIntf_trig_

variable_two_enable.

Example proc yourIntfTrigCfgReset {} {
global yourIntf_trig_variables

the variable names used by yourIntf trigger window
widgets
set yourIntf_trig_variables [list\

\${_sys}\${_domain}variable_one\
\${_sys}\${_domain}variable_one_enable\
\${_sys}\${_domain}variable_two\
\${_sys}\${_domain}variable_two_enable]

set _sys “yourIntf_”
set _domain “trig_”
set cmd “global [subst $yourIntf_trig_variables]”
eval $cmd

initialize yourIntf variables
set yourIntf_trig_variable_one <default value>
set yourIntf_trig_variable_one_enable <default value>
set yourIntf_trig_variable_two <default value>
set yourIntf_trig_variable_two_enable <default value>

}

6-10

Developing a Trigger Panel

Developing the yourIntfTrigCfgPrint Procedure
Developing the yourIntfTrigCfgPrint Procedure

You must develop the yourIntfTrigCfgPrint Tcl procedure. This procedure

writes human-readable documentation about the current trigger

configuration to a specified file descriptor. The written text should be easy to

understand and complete.

The configuration tool calls this procedure whenever the end user chooses

the Print menu item from the File menu in the configuration tool’s main

window or Edit Method window.

When the configuration tool calls this procedure, it passes to the procedure

one parameter: an open file descriptor that all output should be written to.

This procedure should only write to this file descriptor; it should not read

from it nor close it.

To construct what is written, use the table formatting utility utlTableRow

(see “utlTableHeader, utlTableRow, utlTablePut” on page 8-71). With this

utility, the final output should be a table that looks something like the

following:

where

<name#> The name of Trigger window variables.

<value#> The current value of a Trigger window variable.

Empty lines, as shown in the example table above, may be inserted to

separate related configuration parameters. This can improve the generated

documentation’s readability, especially for tables with many rows.

Trigger Configuration

System Item Value

<name1>
<name2>

<value1>
<value2>

<yourIntf>
<yourIntf>

<name3>
<name4>

<value3>
<value4>

:
:

:
:

6-11

Developing a Trigger Panel

Developing the yourIntfTrigCfgPrint Procedure
The following example of a yourIntfTrigCfgPrint procedure assumes that

the Trigger window requires four variables: yourIntf_trig_variable_one,

yourIntf_trig_variable_one_enable, yourIntf_trig_variable_two, and yourIntf_trig_

variable_two_enable.

Example proc yourIntfTrigCfgPrint f {
global yourIntf_trig_variable_one \

yourIntf_trig_variable_one_enable \
yourIntf_trig_variable_two \
yourIntf_trig_variable_two_enable

compose value strings
set sys_str “yourIntf”

if {$yourIntf_trig_variable_one_enable} \
{set v1 $yourIntf_trig_variable_one

} else {set v1 “<disabled>”}

if {$yourIntf_trig_variable_two_enable} \
{set v2 $yourIntf_trig_variable_two

} else {set v2 “<disabled>”}

generate additional trigger documentation
utlTableRow $f $sys_str “Var One” $v1
utlTableRow $f $sys_str “Var Two” $v2
utlTableRow $f

}

6-12

Developing a Trigger Panel

Developing the yourIntfTrigGetFocus Procedure
Developing the yourIntfTrigGetFocus Procedure

You can optionally develop the yourIntfTrigGetFocus Tcl procedure. This

procedure allows the configuration tool to display the current trigger focus

on the Edit Mapping window. This is very useful in target systems that

asynchronously send data that is to be mapped in messages. Trigger focus

directs the end user’s attention to the relevant location on the Edit Mapping

window. This reduces the possibility of confusion and error when the

end user adds new mappings.

If you don’t want to display the trigger focus for a specific type of system on

the Edit Mapping window, you can disable trigger focus functionality for the

target system type by setting the trigger focus flag in the supports method to

0 (see “yourIntfClass::supports” on page 7-43). With this flag set to 0, you do

not need to define a trigger focus procedure, and you may skip this

procedure.

If you want to display the trigger focus for a specific type of system, you must

develop this procedure and enable trigger focus functionality for the target

system type by setting the trigger focus flag in the supports method to 1.

With this flag set to 1, the configuration tool calls this procedure whenever it

needs to update the Edit Mapping window. The configuration tool passes no

parameters to this procedure, but expects this procedure to return a valid

path specification in the form of a Tcl list.

The following example of a yourIntfTrigGetFocus procedure sets the

trigger focus to the current value of yourIntf_trig_variable_one.

Example proc yourIntfTrigGetFocus {} {
global yourIntf_trig_variable_one \

yourIntf_trig_variable_one_enable

if triggering is disabled
if {!$yourIntf_trig_variable_one_enable} {return ““}

return $yourIntf_trig_variable_one
}

6-13

Developing a Trigger Panel

Developing the yourIntfTrigCreatePanel Procedure
Developing the yourIntfTrigCreatePanel Procedure

You must develop the yourIntfTrigCreatePanel Tcl procedure. This

procedure creates the target system type’s trigger panel. This panel is

automatically inserted into the Trigger window as needed.

The configuration tool calls this procedure whenever the end user does one

of the following:

• chooses the Trigger... menu item from the Edit Method window’s Edit

menu

• clicks on the Edit Trigger... button in the Edit Method window

• expands the target system type’s trigger panel by enabling the Trigger

window’s yourIntf... check box

Before you can write this procedure, you must lay out the trigger panel’s

interface. Once you have done this, you must prepare your layout for use

with Tk. The panel’s labels will be built using Tk label widgets. The panel’s

text entry widgets will be built using Tk entry widgets. The panel’s buttons

will be built using Tk button widgets. All of these widgets must be grouped

together using Tk frame widgets. Due to the way the Tk pack command

works, each frame widget must enclose only rows or columns of Tk widgets.

The trigger panel’s widgets should be pushed right 30 pixels. This can be

done by creating an empty frame, and later placing it on the left-hand side of

the panel in the yourIntfTrigPackPanel procedure (see “Developing the

yourIntfTrigPackPanel Procedure” on page 6-17).

To make it easier to keep track of the position and nesting of trigger panel

widgets, layout the Tk frames for the trigger panel on the layout you

developed for the Access window (see “Developing the yourIntfAccessGui

Procedure” on page 5-15). The following figure shows a sample layout for

trigger panel frames.
6-14

Developing a Trigger Panel

Developing the yourIntfTrigCreatePanel Procedure
When the configuration tool calls this procedure, it passes in one parameter:

the name to use for the trigger panel’s top-level window. Note that the

configuration tool will never call yourIntfTrigCreatePanel if it already

exists.

To process all of the window’s widgets, call the utlPrepareWidget utility

(see “utlPrepareWidget” on page 8-60). This utility ensures that the

appearance and behavior of all widgets in the configuration tool are

consistent. For entry and text widgets that are output only, use the utility’s

-noEntry option to ensure the widget’s background color is appropriately

set. When a check box or radio button widget controls whether or not an

entry widget is enabled, use the utility’s -autoSelect <list> option to ensure

that the check box and radio button widgets automatically become enabled

when the end user clicks a mouse button on the entry widget. The <list>

option argument must be a Tcl list of all check box and radio button widgets

that affect the state of the entry widget.

This procedure should return a Tcl list of text entry widgets that will be

included in the Trigger window’s focus traversal list. Focus traversal occurs

when an end user first selects a text entry widget, then presses the <Return>

key. Pressing the <Return> key causes the next entry widget to be selected

for end user input.

This procedure must ensure that the trigger panel’s widgets stay

synchronized. If a check box is disabled or off, its corresponding entry

widget should be disabled. Conversely, if a check box is enabled and on, its

corresponding entry widget should be enabled. To do this, call the

yourIntfTrigSync procedure (see “Developing the yourIntfTrigSync

Procedure” on page 6-24) whenever the check box widget’s state changes.
6-15

Developing a Trigger Panel

Developing the yourIntfTrigCreatePanel Procedure
The following example of a yourIntfTrigCreatePanel procedure assumes

that the Trigger window requires four variables: yourIntf_trig_variable_one,

yourIntf_trig_variable_one_enable, yourIntf_trig_variable_two, and yourIntf_trig_

variable_two_enable.

Example proc yourIntfTrigCreatePanel p {
global yourIntf_trig_variable_one \

yourIntf_trig_variable_one_enable \ yourIntf_trig_
variable_two \

yourIntf_trig_variable_two_enable

set self $p
if {![string match *. $p]} {set p “${p}.”}

create frame widgets
frame ${p}yourIntf_pad_fr
frame ${p}yourIntf_opt_fr -relief groove
frame ${p}var_one_fr
frame ${p}var_two_fr
utlPrepareWidget ${p}yourIntf_pad_fr ${p}yourIntf_opt_fr \

${p}var_one_fr ${p}var_two_fr

create sys one trigger type frame label
label ${p}yourIntf_trig_lb -text “Trigger:” -padx 3 -anchor w
utlPrepareWidget ${p}yourIntf_trig_lb

create “variable one” widgets
checkbutton ${p}var_one_cb -text “Var One:” \

-variable yourIntf_trig_variable_one_enable \
-command [list yourIntfTrigSync $self]

entry ${p}var_one_en -textvariable yourIntf_trig_variable_one
utlPrepareWidget -autoSelect ${p}var_one_cb ${p}var_one_cb \

${p}var_one_en
bind ${p}var_one_en <KeyPress-Escape> \

[list yourIntfTrigEscapeKHan $self ${p}var_one_en]

create “variable two” widgets
checkbutton ${p}var_two_cb -text “Var Two:” \

-variable yourIntf_trig_variable_two_enable \
-command [list yourIntfTrigSync $self]

entry ${p}var_two_en -textvariable yourIntf_trig_variable_two
utlPrepareWidget -autoSelect ${p}var_two_cb ${p}var_two_cb \

${p}var_two_en
bind ${p}var_two_en <KeyPress-Escape> \

[list yourIntfTrigEscapeKHan $self ${p}var_two_en]

return entry widget traversal chain
return [list ${p}var_one_en ${p}var_two_en]

}

6-16

Developing a Trigger Panel

Developing the yourIntfTrigPackPanel Procedure
Developing the yourIntfTrigPackPanel Procedure

You must develop the yourIntfTrigPackPanel Tcl procedure. This

procedure packs together the widgets created by the

yourIntfTrigCreatePanel procedure.

The configuration tool calls this procedure whenever the end user does one

of the following:

• chooses the Trigger... menu item from the Edit Method window’s Edit

menu

• clicks on the Edit Trigger... button in the Edit Method window

• expands the target system type’s trigger panel by enabling the Trigger

window’s yourIntf... check button

Use the Tcl pack command to pack widgets. Be sure to use the appropriate

-expand and -fill options to ensure that the widgets exhibit the correct

behavior when the window is manually resized. Follow these guidelines:

• When packing frame widgets, supply pack the options -expand 1 and

-fill both.

• When packing label widgets, supply pack the option -fill x.

• When packing entry widgets, supply pack the options -expand 1 and

-fill x.

• When packing check box widgets, supply pack the option -fill y.
6-17

Developing a Trigger Panel

Developing the yourIntfTrigPackPanel Procedure
The following example of a yourIntfTrigPackPanel procedure assumes

that the Trigger window requires four variables: yourIntf_trig_variable_one,

yourIntf_trig_variable_one_enable, yourIntf_trig_variable_two, and yourIntf_trig_

variable_two_enable.

Example proc yourIntfTrigPackPanel p {

set self $p
if {![string match *. $p]} {set p “${p}.”}

yourIntf frame
pack ${p}yourIntf_pad_fr ${p}yourIntf_opt_fr -side left \

-in $self -anchor n
pack ${p}yourIntf_pad_fr -fill y -padx 15
pack ${p}yourIntf_opt_fr -expand 1 -fill both

sys one trigger type groupings
pack ${p}yourIntf_trig_lb ${p}var_one_fr \

${p}var_two_fr -side top -in ${p}yourIntf_opt_fr
pack ${p}yourIntf_trig_lb -fill x
pack ${p}var_one_fr ${p}var_two_fr -expand 1 -fill both -padx 5

trigger: variable one
pack ${p}var_one_cb ${p}var_one_en -in ${p}var_one_fr \

-side left
pack ${p}var_one_en -expand 1 -fill x -pady 3

trigger: variable two
pack ${p}var_two_cb ${p}var_two_en -in ${p}var_two_fr \

-side left
pack ${p}var_two_en -expand 1 -fill x -pady 3

}

6-18

Developing a Trigger Panel

Developing the yourIntfTrigIsEnabled Procedure
Developing the yourIntfTrigIsEnabled Procedure

You must develop the yourIntfTrigIsEnabled Tcl procedure. This

procedure indicates whether or not any triggers for the type of target system

are enabled. If 0 is returned, the configuration tool assumes that all triggers

are disabled. If 1 is returned, the configuration tool assumes that at least one

trigger is enabled.

The configuration tool calls this procedure to determine whether the trigger

panel should be initially displayed expanded or unexpanded. If any system

type-specific triggers are enabled when the Trigger window is first displayed,

the target system type’s trigger panel is initially drawn expanded. Otherwise,

the target system type’s trigger panel is initially drawn unexpanded since it is

not relevant for the current data mapping.

The following example of a yourIntfTrigIsEnabled procedure assumes that

the Trigger window requires four variables: yourIntf_trig_variable_one,

yourIntf_trig_variable_one_enable, yourIntf_trig_variable_two, and yourIntf_trig_

variable_two_enable.

Example proc yourIntfTrigIsEnabled {} {

global yourIntf_trig_variable_one_enable \
yourIntf_trig_variable_two_enable

if {$yourIntf_trig_variable_one_enable ||
$yourIntf_trig_variable_two_enable} {return 1

} else {return 0}
}

6-19

Developing a Trigger Panel

Developing the yourIntfTrigEscapeKHan Procedure
Developing the yourIntfTrigEscapeKHan Procedure

You must develop the yourIntfTrigEscapeKHan Tcl procedure. This

procedure handles when the end user presses the <Escape> key in a target

system type’s trigger panel entry widget. This procedure completes the

entered value if unique, otherwise it displays a list of matching completions.

This procedure does not need to be called for entry widgets that do not

support completion. But in the interests of consistency and usability, every

entry widget should support completion if at all possible. Most of the

configuration tool’s entry widgets currently support completion. On the other

hand, if none of the target system type’s trigger panel entry widgets support

completion, you do not need to define a trigger escape key handler

procedure, therefore you may skip this procedure.

The configuration tool never calls this procedure. It is only called when the

end user types the <Escape> key while the mouse cursor lies over an entry

widget in the target system type’s trigger panel. This causal relationship is set

up in the yourIntfTrigCreatePanel procedure.

When Tcl calls the yourIntfTrigEscapeKHan procedure, it is usually

passed two parameters: the name of the trigger panel and which entry widget

to complete. This procedure should compose a list of completions for this

widget, then pass this list to the utlCompleteEntry utility (see

“utlCompleteEntry” on page 8-26).

If a list of appropriate completions could not be determined, such as when

the target system’s database is missing vital data or you cannot communicate

with the target system, call the utlCompleteEntryMsg utility (see

“utlCompleteEntryMsg” on page 8-27). This will temporarily display your

informative error message in the entry widget that the end user is trying to

complete.

If it is going to take a long time to compose the list of possible completions,

use the utlBusyCursor and utlIdleCursor utilities (see “utlBusyCursor,

utlIdleCursor” on page 8-17). These utilities allow you to temporarily display

the end user’s mouse cursor as an hourglass sprite.
6-20

Developing a Trigger Panel

Developing the yourIntfTrigEscapeKHan Procedure
Example proc yourIntfTrigEscapeKHan {p w} {

if {![string match *. $p]} {set p “${p}.”}

fetch entered value
set value [$w get]

utlBusyCursor

compose a list of matching entries
if {$w == “${p}val_one_en”} \

{set items < compose Tcl list here >
} else if {$w == “${p}val_two_en”} \

{set items < compose Tcl list here >
} else {

utlIdleCursor
return

}

utlCompleteEntry $p $w $items -title “Trigger Completions:”

utlIdleCursor
}

6-21

Developing a Trigger Panel

Developing the yourIntfTrigApplyHan Procedure
Developing the yourIntfTrigApplyHan Procedure

You must develop the yourIntfTrigApplyHan Tcl procedure. This

procedure verifies the values stored in the target system type’s trigger

configuration variables.

If any invalid values are found, this procedure should report the error and

return. In this case, the displayed trigger configuration is not saved and the

Trigger window remains mapped. Otherwise, this procedure should return

without error, indicating that the target system type’s portion of the trigger

configuration is correct.

The configuration tool calls this procedure whenever the end user clicks on

the Trigger window’s Apply button.

When this procedure is called, it is passed one parameter: the name of the

trigger panel to check.

When entry widgets have an associated enable/disable check box widget and

the check box widget is disabled, do not check the current values of the

dependent entry widgets. In this situation, illegal entry widget values are

allowed.

Before saving the end user’s changes, check for these common problems:

• empty entry widgets

• numeric entry widgets filled with non-numeric text

• non-numeric entry widgets filled only with numeric text

• invalid combinations of enabled checkbutton widgets

To detect and report the first and third problems, use the utlChkAlpha

utility (see “utlChkAlpha” on page 8-20). To detect and report the first and

second problems, use the utlChkInt utility (see “utlChkInt” on page 8-23).

You’ll have to detect the last problem yourself and use the Tcl error command

to report the problem to the end user. Be aware that the configuration tool

intercepts errors and displays themr in an Error window.

Once you’ve verified that the current values of the trigger variables are

correct, press <Return>. The configuration tool saves the current values of

the target system’s trigger variables to a configuration file (assuming

everything else entered on the Trigger window is correct).
6-22

Developing a Trigger Panel

Developing the yourIntfTrigApplyHan Procedure
The following example of a yourIntfTrigApplyHan procedure assumes that

the Trigger window requires four variables: yourIntf_variable_one, yourIntf_

variable_one_enable, yourIntf_variable_two, and

yourIntf_variable_two_enable.

Example proc yourIntfTrigApplyHan p {
global yourIntf_variable_one \

yourIntf_variable_one_enable \
yourIntf_variable_two \
yourIntf_variable_two_enable

if {![string match *. $p]} {set p “${p}.”}

check fields...
if {$yourIntf_variable_one_enable} {

utlChkAlpha $yourIntf_variable_one \
-comment “Expected a symbolic database address.” \
[utlWidgetText ${p}var_one_cb]

}

if {$yourIntf_variable_two_enable} {
utlChkAlpha $yourIntf_variable_two \

-comment “Expected a symbolic database address.” \
[utlWidgetText ${p}var_two_cb]

}
}

6-23

Developing a Trigger Panel

Developing the yourIntfTrigSync Procedure
Developing the yourIntfTrigSync Procedure

You must develop the yourIntfTrigSync Tcl procedure. This procedure

synchronizes the state of the target system type’s trigger panel widgets.

This procedure is called whenever the state of a trigger panel widget

changes. For example, if an entry widget has an associated enable/disable

check box widget, the entry widget should be disabled when the check box

widget is off and enabled when it is on. For nested widget dependencies,

more complex widget enabling and disabling is required.

The configuration tool never calls this procedure. Rather, it is called when a

trigger panel widget changes state. This causal relationship is set up in the

yourIntfTrigCreatePanel procedure.

The following example of a yourIntfTrigSync procedure assumes that the

Trigger window requires four variables: yourIntf_trig_variable_one, yourIntf_

trig_variable_one_enable, yourIntf_trig_variable_two, and yourIntf_trig_variable_

two_enable.

Example proc yourIntfTrigSync p {
global yourIntf_trig_variable_one_enable \

yourIntf_trig_variable_two_enable

if {![string match *. $p]} {set p “${p}.”}

if {$yourIntf_trig_variable_one_enable} \
{${p}var_one_en configure -state normal
} else {${p}var_one_en configure -state disabled}

if {$yourIntf_trig_variable_two_enable} \
{${p}var_two_en configure -state normal
} else {${p}var_two_en configure -state disabled}

}

6-24

7

7 Class Reference

Class Reference
This chapter documents the communication classes for the Agilent

Technologies Enterprise Link data server, configuration tool, and spooler.

The “elLinkClass” on page 7-25 documents the class for the data server’s

core. The “elCommClass” on page 7-5 documents the data server’s base

communication class and the modifications that you must make to the base

class for your class.

The “yourIntfClass” on page 7-36 documents the class that you must write for

the configuration tool.

The “elSpoolerClass” on page 7-34 documents the spooler’s base class for the

elFIFOSpoolerClass and the elRASpoolerClass. The “elFIFOSpoolerClass” on

page 7-21 documents the “first-in-first-out” (FIFO) spooler class. The

“elRASpoolerClass” on page 7-30 documents the random-access (RA) spooler

class.
7-2

Class Reference

Return Values
Return Values

The return value for many of the methods in this chapter is “No return value

is defined.” Without an explicit “return” statement, a Tcl function returns

whatever value happened to be returned by the last command used in the

function. This means that no particular return value is defined: the method

does not consistently return anything.

Note Your code should not rely on any values returned from a method with no

defined return value, since the method may return some different value in a

future release of Enterprise Link.

Current Working Directory

All of the methods of an Enterprise Link communication object that change

the current working directory during their execution must be sure to restore

the current working directory to its original value before returning. Failure to

do this will result in undesirable behavior of the elserver process. For

example, it will no longer be possible to stop the elserver process from the

interactive configuration tool elconfig.

The current working directory must be restored whenever any

communication object method returns successfully, unsuccessfully, and

whenever a Tcl error occurs during method execution.The current working

directory can be obtained by calling the Tcl procedure pwd and can be

changed by calling the Tcl procedure cd.

Example The Tcl method shown below demonstrates how to use the Tcl catch

procedure to ensure that the current working directory is always restored to

its original value:

method write args {

--- note the original working directory ---
set orig_pwd [pwd]

--- do the write inside a “catch” command ---
if {[catch {

:
cd <the desired directory>

:
<do write-related stuff here>

--- restore current working directory ---
} rv]} {

catch {cd $orig_pwd}
7-3

Class Reference

Return Values
error $rv
} else {

cd $orig_pwd
}

return $rv
}

7-4

Class Reference

elCommClass
elCommClass

The elCommClass is the base class for all data server communication

classes. When you write a data server communication class, you should

inherit from this class. See Chapter 3, “Developing the Data Server

Communication Object,” for procedures and examples. This class provides

useful default methods that will respond correctly for any methods you

choose not to implement in your communication class. In addition, the base

class provides two instance variables: $discardInput and $discardOutput.

elCommClass Methods

commit Makes all write invocations since the last commit or rollBack permanent.

constructor Initializes instance variables.

consumeOptions Processes command-line arguments.

destructor Shuts down communication with the target system.

getChildren Returns the child node names as a Tcl list.

list2path Converts a list to a path string.

open Loads configuration information and prepares the object for use.

options Queries and sets command-line option keywords.

path2list Converts a path string to a list.

read Reads values from the target system.

rollBack Undoes all write invocations since the last commit or rollBack.

run Completes trigger setup after all triggers have been passed to setTrigger.

selectionProcedures Retrieves, deletes, executes or creates selection procedures.

setTrigger Sets a trigger for the indicated method.

supports Indicates whether or not a feature is supported.

usage Returns command-line usage information.

write Writes values to the target system.
7-5

Class Reference

elCommClass
elCommClass Data Members

elCommClass::commit

commit

Return Value No return value is defined.

Remarks The base class’s commit method just returns, which is the correct response

when a communication class does not support a commit concept. If your

target system does not support this concept, you do not need to define a

commit method.

Your derived class’s commit method should make the effects of all write

invocations since the last commit or rollBack permanent in the target

system. Your method should work hard to avoid raising a Tcl error. For

example, if elLinkClass::execute has already invoked commit in several

communication objects and then your communication object signals an

error, very little error recovery can occur. elLinkClass::execute has no

choice but to log an error and continue committing, because objects that

have already been committed cannot be rolled back.

See Also “elCommClass::write” on page 7-19, “elCommClass::rollBack” on page 7-14,

and “elLinkClass::execute” on page 7-26.

elCommClass::constructor

constructor

Return Value No return value is defined.

$discardInput Discard data received from the target system.

$discardOutput Discard data that would be sent to the target system.
7-6

Class Reference

elCommClass
Remarks The constructor method is invoked automatically when the object is first

created and should carry out any simple initializations required to do

options, consumeOptions, or usage argument parsing.

Most communication objects will not need a constructor method since all

non-trivial initialization is done in the open method and trivial initialization

of instance variables can be done directly in the instance-variable declaration

in [incr Tcl].

elCommClass::consumeOptions

consumeOptions varName

Return Value No return value is defined.

Parameters varName The name of the variable containing the list of command-line

arguments.

Remarks The base class’s consumeOptions method just returns, which is the correct

response when a communication object doesn’t use command-line

arguments. Only override this method with your own when you have

command-line options to process.

Your derived class’s consumeOptions method should search a list of

command-line arguments, removing from the list any that the communication

object recognizes. If an error in command-line argument parsing is detected

(for example, missing arguments or an invalid combination of arguments),

your method should raise a Tcl error condition.

You can use the utlGetArg utility to remove command-line option keywords

from $varName. You can use the utlPeekArg utility to parse keywords and

leave them in $varName. If you use these utilities, you must do an

upvar $varName args

since the utilities assume they are working on a local variable args. Do not

call the utlArgEnd utility since other communication objects may not yet

have had their consumeOptions method invoked at the time yours is

invoked.

See Also “elCommClass::options” on page 7-11, “elCommClass::usage” on page 7-18,

and “utlGetArg, utlPeekArg, utlArgEnd” on page 8-43.
7-7

Class Reference

elCommClass
elCommClass::destructor

destructor

Return Value No return value is defined.

Remarks The destructor method is invoked automatically when the object is

destroyed. It should shut down all communication links with the target

system. Currently, communications are only destroyed when the data server

exits.

elCommClass::discardInput

$discardInput

Remarks When this variable is 1, the communication object should discard data

received from the target system. By default, this variable is 0.

When this variable is 1, the setTrigger method should ignore all invocations.

When both the $discardInput and the $discardOuput variables are 1, you

should not even try to communicate with the target system.

elCommClass::discardOutput

$discardOutput

Remarks When this variable is 1, the communication object should discard data that

would otherwise have been sent to the target system. By default, this variable

is 0.

When both the $discardInput and the $discardOuput variables are 1, you

should not even try to communicate with the target system.
7-8

Class Reference

elCommClass
elCommClass::getChildren

getChildren [-filter pattern] node

Return Value Must return as a Tcl list the names of the child nodes that are actually

available from the source system.

Parameters -filter pattern Only return names of children that match pattern.

node Full path name to the desired parent node, expressed as a Tcl list.

Remarks So that the data server can use communication object-independent (also

known as selection) procedures, all communication objects supporting

dynamic mapping must also support the getChildren method. Your

getChildren method must get the names of the children under $node. The

returned list of child names must not include any path information.

By definition, the root node of the name space tree is the empty string.

Therefore, [$commObject getChildren “”] returns the names of all nodes lying

directly under the root node.

Generic selection procedures invoke this method whenever they need to

acquire the names of child nodes.

elCommClass::list2path

list2path pathAsList

Return Value Returns the human-readable version of $pathAsList.

Parameters pathAsList A list specifying a path in the logical name space.

Remarks The base class’s list2path method converts pathAsList into a

human-readable file system path by inserting solidus characters (/) between

each item in the list. For example, {a b c} is turned into /a/b/c.

This method is invoked by elLilnkClass::execute and other methods when

paths need to be made part of error messages.
7-9

Class Reference

elCommClass
Your derived class’s list2path method should convert pathAsList into

something that makes sense for your end users.

See Also “elCommClass::path2list” on page 7-11

elCommClass::open

open

Return Value No return value is defined.

Remarks The base class’s open method loads the communication object’s

obj_dataflow.cfg configuration file and sets the $discardInput and

$discardOutput instance variables accordingly. This is the correct response

if your derived class does not have an open method.

If your derived class does have an open method, the obj_dataflow.cfg file must

still be read. The most reliable way to read the file is to invoke this base

class’s open method from your derived class’s open method. For example,

itcl_class myDerivedClass {
inherit elCommClass
method open {} {

elCommClass::open
...

If the base class’s open method sets both $discardInput and

$discardOutput to 1, then your open method should not even attempt to

open a connection to the target system. This is useful when debugging other

communication objects.

If the configuration tool will be developed to support the viewing and editing

of system-specific access information, the data server’s open method needs

to read and load the access configuration file before opening the connection

to the target system. If this configuration file does not exist, you’ll have to

either report an error or use default access configuration parameters. If you

use default values, they should match the configuration tool’s Access window

defaults. If open raises a Tcl error condition, the data server prints an error

message and exits.

See Also “elCommClass::destructor” on page 7-8.
7-10

Class Reference

elCommClass
elCommClass::options

options optkeys

Return Value Returns the current command-line option keyword names as a Tcl list.

Parameters optkeys New names for command-line option keywords as a Tcl list. The

list must be exactly as long as the number of command-line keywords the

object supports. Each option in the list will replace the option that occupies

the same position in the current command-line keyword list.

Remarks The base class’s options method just returns, which is the correct response

when a communication object doesn’t use any command-line arguments.

Only override this method with your own when you have command-line

options to process.

Your derived class’s options method should get or set the command-line

option keywords supported by this object. The configuration tool invokes

this method to determine what command-line option keywords are currently

supported and also to assign new command-line option keywords when there

are keyword collisions with either the configuration tool’s command-line

option keywords or some other communication object’s command-line

option keywords.

See Also “elCommClass::consumeOptions” on page 7-7, “elCommClass::usage” on

page 7-18, and the variable argv in your Tcl documentation.

elCommClass::path2list

path2list path

Return Value Returns $path as a Tcl list.

Parameters path The path to convert to a Tcl list.

Remarks The base class’s path2list method converts $path to a Tcl list. This method

implements exactly the opposite conversions that are implemented in the

list2path method.
7-11

Class Reference

elCommClass
The data server invokes this method to convert paths expressed with a

syntax more easily understood by the user to paths expressed as Tcl lists.

See Also “elCommClass::list2path” on page 7-9

elCommClass::read

read {configuredMethodName1 ...} srcArrayName

Return Value No return value is defined.

Parameters {configuredMethodName1 ...} The list of configured method names to

acquire data for and store in the source array.

srcArrayName The name of the source array to store the target system

data in.

Remarks The base class’s read method just returns, which is the correct response

when a target system only accepts data and never sends any data back to

your communication class.

Your derived class’s read method should read values from the target system

and store them in the source array. The elLinkClass::execute method

invokes your read method when it needs data values from your object to

execute the list of configured methods. Your read method must use

elLinkClass::methodInfo to retrieve the list of name-space paths that

specify which data values are needed and must retrieve those data values

from the target system. Your method must also determine which, if any,

selection procedures need to be invoked, then invoke those selection

procedures and note the paths they return. Your read method must then

retrieve any needed data values from the target system.

In database-oriented communication objects, your read method must query

the database for the indicated source paths. In message-oriented

communication objects, your read method must find source values for all the

indicated source paths in the most recent message received from the target

system.
7-12

Class Reference

elCommClass
The source array is a nested array. Tcl does not support a simple src(a)(b)(c)

syntax for nested arrays, but nested arrays are a supported part of the Tcl

language (see the upvar command). If you do not want to manipulate nested

arrays directly, you may use utlGetArray and utlSetArray as illustrated in

the vector and filters examples.

Conceptually, the structure of the source array is

src(srcPath) = value
src(srcPath)(rowNum) = value
src(srcPath)(size) = number of rows
src(srcPath)(methodName)(rowNum) = value
src(srcPath)(methodName)(size) = number of rows

Scalar values are stored with only one level of nesting. Therefore, you can

manipulate them using the standard Tcl array reference syntax.

upvar $srcArrayName src
set src($path) $value

Vectors and columns of tables are represented as Tcl arrays nested within the

source array. Therefore, to manipulate these arrays you need utilities like

utlGetArray and utlSetArray. These vector and column arrays always start

their row numbers at zero and their size element’s value must be one greater

than the highest-numbered element. For example,

upvar $srcArrayName src
set i 0
foreach value [allValuesInColumn $path] {

utlSetArray src $path $i $value
incr i

}
utlSetArray src $path size $i

Notice that the size element is not the number of elements in the vector or

column, rather it is one greater than the largest array index. In the example

above, these quantities are identical only because there are no missing

entries in the column being stored in the source array.

If you have implemented any filters in your trigger conditions, you need a

third level of array nesting to indicate which vectors or columns belong to the

filters associated with each configured method. For example,

foreach methodName $configuredMethodNames {
set i 0
foreach value [allValuesInColumn $path $methodName] {

setArray src $path $methodName $i $value
incr i

}
setArray src $path $methodName size $i

}

The read method may refresh the values of paths in the source array that

already have values.
7-13

Class Reference

elCommClass
The Tcl ${srcArrayName}_select variable is an array indexed by a string

made up of a selection procedure’s name and arguments. Each element of

this array contains the list of source addresses the selection procedure found

when it was executed. Each of the source addresses are in the form of a Tcl

list. For example:

upvar ${array_name}_select select

--- for each selection procedure called by $method ---
foreach info [elLink methodInfo select $method] {

set proc_and_args [lindex $info 1]

extract selection procedure's name and arguments
set proc [lindex $proc_and_args 0]
set args [lindex $proc_and_args 1]

invoke selection procedure and store the results
set select($proc_and_args) [<invoke selection procedure $proc here>]

}

Errors In message-oriented communication objects, the read method is responsible

for determining whether all the values that arrived in a message were either

mapped somewhere or were explicitly discarded. The read method should

log an error message for every unused value, providing the logical name

space path and value.

As a rule, the read method should not log any other error messages. The

elLinkClass::execute method diagnoses missing values in the source array

and two error messages should not be logged for each missing value.

Furthermore, execute can use context like the user-configured

error-handling scheme for the method to respond correctly when an error is

detected. The read method has a harder time responding correctly.

Therefore, the read method should raise an error condition or log an error

only in those rare cases when something happens that execute is not likely

to diagnose effectively.

See Also “elCommClass::write” on page 7-19, “elLinkClass::execute” on page 7-26,

“utlGetArray” on page 8-46, and “utlSetArray” on page 8-63.

elCommClass::rollBack

rollBack

Return Value No return value is defined.
7-14

Class Reference

elCommClass
Remarks The base class’s rollBack method just returns, which is the correct response

when a communication class does not support a roll back concept. If your

communication class does not support the roll back concept, you do not

need to define this method.

Your derived class’s rollBack method should undo the effects of all the

write invocations since the last commit or rollBack invocation.

See Also “elCommClass::commit” on page 7-6, “elCommClass::read” on page 7-12, and

“elLinkClass::execute” on page 7-26.

elCommClass::run

run

Return Value No return value is defined.

Remarks The run method is invoked by the data server once all triggers have been

passed to the setTrigger method. Pairing the run method with the

setTrigger method ensures that the communication object proceeds with

any required actions only after it has accepted all trigger information.

Using the setTrigger and run method pair is useful for configurations in

which setting triggers one by one is either inefficient or impossible, as is the

case with database-oriented messages.

When the $discardInput variable is set to 1, all input to this communication

object is being discarded and this method or method pair should ignore all

invocations.

See Also “elCommClass::setTrigger” on page 7-17.
7-15

Class Reference

elCommClass
elCommClass::selectionProcedures

selectionProcedures

selectionProcedures procedureName

selectionProcedures procedureName arguments

selectionProcedures procedureName arguments body apiVersion

Return Value The selectionProcedures method without parameters must return the

names of all available selection procedures as a Tcl list of zero or more

three-item lists:

{<procedureName> <arguments> <apiVersion>} {<procedureName> <arguments>
<apiVersion>} ...

The Tcl list should include selection procedures originating in both the

communication object and the data server.

The selectionProcedures method with only the procedureName parameter

must return a Tcl list of the names of deleted procedures:

<procedureName> <procedureName> ...

The selectionProcedures method with the procedureName and arguments

parameters must return the selection procedures invoked, error messages

encountered, and the selected sources as a Tcl list of zero or more three-item

lists:

{{<procedureName> <arguments>} {errCode} {<selectedSources>}}
{{<procedureName> <arguments>} {errCode} {<selectedSources>}} ...

The selectionProcedures method with the procedureName, arguments,

body and apiVersion parameters returns a Tcl list of the newly created

selection procedures:

<procedureName> <procedureName> ...

Parameters procedureName The name of the selection procedure.

arguments The arguments used by the selection procedure.

body The body text defining the selection procedure.

apiVersion The application programming interface (API) version of the

arguments and the values they return. In the E.02.20 version of Enterprise

Link, the API version is 1.
7-16

Class Reference

elCommClass
Remarks The selectionProcedures method is invoked by the data server in order to

query, create, execute, and delete selection procedures.

If only procedure names are supplied as a parameter, this method deletes

selection procedures. If procedure names and arguments are supplied, this

method executes selection procedures. If procedure names, procedure

arguments, procedure bodies, and API versions are supplied, this method

creates selection procedures.

elCommClass::setTrigger

setTrigger configuredMethodName

Return Value No return value is defined.

Parameters configuredMethodName The name of the configured method to associate

with the trigger condition.

Remarks The base class’s setTrigger method just returns, which is the correct

response when a communication class does not provide any triggers and

does not support time-based triggers.

The setTrigger method can behave in one of two ways. In the first case, the

setTrigger method completes a series of actions every time it receives

trigger information. In the second case, the setTrigger method collects

trigger information until the run method is invoked by

elCommClass::execute.

In the first case, your derived class’s setTrigger method should set a trigger

for the indicated method. The setTrigger method associates a configured

method name with a trigger condition. If necessary, the setTrigger method

tells the target system to notify the communication object of the occurrence

of the trigger condition and it establishes a Tcl event handler to receive such

notification.

In the second case, the setTrigger method does all the activities described

above, except the run method—not the setTrigger method—tells the target

system to notify the communication object of the occurrence of the trigger

condition and the run method then establishes a Tcl event handler to receive

the notification.
7-17

Class Reference

elCommClass
The invoker’s local variables contain the description of the trigger condition.

Your setTrigger method will have to use the Tcl upvar command to extract

the values of these variables. The names and meanings of these variables are

part of the interface you defined between the configuration tool and the data

server. See “Configuration Tool/Data Server Interface” on page 1-19.

Each communication object capable of initiating a configured method

execution must override this method or method pair.

When the $discardInput variable is set to 1, all input to this communication

object is being discarded and this method or method pair should ignore all

invocations.

See Also “elCommClass::run” on page 7-15

elCommClass::supports

supports selection procedures

Return Value If a parameter is not supplied, the supports method must return a list of all

parameters that are potentially supported. If a parameter is supplied, the

supports method must return 1 if the parameter is supported and 0 if it is not.

Parameters selection procedures Selection procedures. Setting this to 0 dims the

Select checkbox in the Edit Mapping window.

Remarks Your supports method should return 0 if the functionality specified by each

parameter is unrecognized. The data server invokes this method to determine

the facilities provided by this communication object.

elCommClass::usage

usage

Return Value Returns the list of command options.
7-18

Class Reference

elCommClass
Remarks The base class’s usage method returns {}, which is the correct response

when a communication object doesn’t use any command-line arguments.

Only override this method with your own when you have command-line

options to process.

Your derived class’s usage method should return a list containing

command-line argument usage information. The list is actually a list of lists

with the following format:

{{arg1summary arg1details} ...}

Each argument summary is a list like the following:

{[-e envName]}

The brackets ([]) indicate an optional argument. Each details is a list explaining

what the argument means. New-line characters and any subsequent space or

tab characters in details are translated into space characters. When displayed to

the end user, the details string will have its lines wrapped appropriately.

elCommClass::write

write valuesVarName

Return Value No return value is defined.

Parameters valuesVarName The name of a variable in the invoking procedure whose

value is a list like the following:

{{toPath1 value1} ... {toPathN valueN}}

toPath: where to store the value

value: the value to store

Remarks The base class’s write method raises a Tcl error condition whenever

anything is written to it, which is the correct response for a read-only

communication class.

Your derived class’s write method should write values to the target system.

In communication classes with no concept of a commit method, the values

are written to the target system immediately. In classes with a commit

method, the values are only written to the target system after the commit

method is invoked or the values are undone when the rollBack method is

invoked.
7-19

Class Reference

elCommClass
The write method is invoked once for each configured method that executes.

When values are written to a table, your write method should interpret all

writes to the same table as being to the same row of that table. The next

write invocation starts another row. In message-oriented communication

objects, when values are written to a message, your write method should

interpret all writes to the same message as being to the same instance of that

message. The next write invocation starts another message. For messages

that contain tables, the next write invocation generally starts a new row in

the table and the message is not sent to the target system until commit is

invoked.

If an error is encountered within the write method, you can discover how to

deal with the errors using the following:

set how [elLink methodInfo error [elLink curMethod]]

A how value of

• continue means log the error and write the other values in the list to the

target system.

• abandonMethod means log the error and return, without writing anything to the

target system.

• abandonAllMethods means do not log the error, but raise a Tcl error condition

with an informative error message. Your invoker is always

elLinkClass::execute. It will log the error, abandon work on all other

methods, and invoke rollBack for every object that was written to.

See Also “elCommClass::read” on page 7-12, “elCommClass::commit” on page 7-6,

“elCommClass::rollBack” on page 7-14, “elLinkClass::execute” on page 7-26,

“elLinkClass::methodInfo” on page 7-28, and “elLinkClass::curMethod” on

page 7-25.
7-20

Class Reference

elFIFOSpoolerClass
elFIFOSpoolerClass

The elFIFOSpoolerClass inherits from the elSpoolerClass. The

elSpoolerClass loads configuration files created by the configuration tool

and provides utilities to query that configuration (see “elSpoolerClass” on

page 7-34). In addition to the methods provided by the elSpoolerClass, the

elFIFOSpoolerClass implements a conventional “first-in-first-out” (FIFO)

spooler. If message limits are specified, older messages are discarded to

make room for newer messages.

The spooler lets you read a number of messages without consuming them by

creating a cursor: a pointer into the spool file. Later, you can make any cursor

“the” cursor by invoking the commit method.

Caution Cursors are necessarily very short-lived. They may safely be passed only to a

number of consecutive read invocations and then to a commit invocation.

All cursors become invalid if you read from the spool file without a cursor,

append to the spool file in between uses of a particular cursor, or do anything

else that may move data within the spool file.

elFIFOSpoolerClass Methods

constructor Creates an instance of the FIFO spooler and initializes it.

byteCount Returns the number of in-use bytes in the spool file.

commit Sets the spool file cursor to the value of the cursor variable name.

msgCount Returns the number of messages queued in the spooler.

print Prints a representation of the spool file object and of the spool file contents.

read Reads the oldest message in the spooler.

write Writes a message to the end of the spool file.
7-21

Class Reference

elFIFOSpoolerClass
elFIFOSpoolerClass::constructor

elFIFOSpoolerClass spooler configFileName spoolFileName

[-errorHandling error|warning]

Return Value No return value is defined.

Parameters spooler The name of the spooler object to create. The remaining

parameters are the same as the ones for “elSpoolerClass::constructor” on

page 7-34.

Remarks Creates an instance of the FIFO spooler and initializes it.

elFIFOSpoolerClass::byteCount

byteCount

Return Value Returns the number of in-use bytes in the spool file.

elFIFOSpoolerClass::commit

commit cursorVarName

Return Value No return value is defined.

Parameters cursorVarName The name of the variable containing the cursor to commit.

Remarks Sets the spool file cursor to the value of the cursor variable name in the

invoker's stack frame. The cursor must refer to a legitimate message position

in the spool file. If it does not, the spool file will be corrupted.
7-22

Class Reference

elFIFOSpoolerClass
elFIFOSpoolerClass::msgCount

msgCount cursorVarName

Return Value Returns the number of messages queued in the spooler. If cursorVarName is

specified, returns the number of messages in the spooler following the

cursor.

Parameters cursorVarName The name of a variable containing the cursor to count

from.

elFIFOSpoolerClass::print

print fd

Return Value No return value is defined.

Parameters fd The name of the file descriptor to print to. If fd is not specified, the file is

printed to standard out.

Remarks Prints a representation of the spool file object and of the spool file contents

for debugging.

elFIFOSpoolerClass::read

read [-timeStamp timeStampVarName] [-cursor cursorVarName]

Return Value Returns the oldest message in the spooler.

Parameters -timeStamp timeStampVarName The name of the variable to assign to the

time stamp value associated with the spooled message being read. Every

message in the spooler has a timestamp containing the time the message was

spooled.
7-23

Class Reference

elFIFOSpoolerClass
-cursor cursorVarName The name of a variable containing the cursor to

read from. If the variable is unset or has no value, a cursor is created that

refers to the message just after the message being read. If the variable is set,

the message read is the one the cursor refers to and the cursor is advanced to

the next message.

Remarks Reads the oldest message in the spooler. When no -cursor argument is

specified, the message read is removed from the spool file.

elFIFOSpoolerClass::write

write message

Return Value No return value is defined.

Parameters message The message to store in the spool file.

Remarks Writes a message to the end of the spool file. If the write causes an error, the

error will be handled as specified by the elSpoolerClass::errorHandling

method.

See Also “elSpoolerClass::errorHandling” on page 7-35.
7-24

Class Reference

elLinkClass
elLinkClass

The only instance of the elLinkClass is the elLink object. The elLink object

is the core of the data server. It executes configured methods and provides

utilities for communication objects.

elLinkClass Methods

elLinkClass::configDir

configDir

Return Value Returns the path of the directory that the data server is currently accessing

configuration files from.

elLinkClass::curMethod

curMethod

Return Value Returns the name of the method currently being executed by the execute

method. Returns {} if the execute method is not active.

configDir Returns the path of the configuration directory.

curMethod Returns the name of the method currently being executed.

execute Executes a list of configured methods.

log Saves a message to the appropriate log.

methodInfo Returns information about a specific configured method.

version Returns the version of software running in the data server.
7-25

Class Reference

elLinkClass
elLinkClass::execute

execute methodList

Return Value Returns 0 if no error or a recoverable error occurred, and 1 if an error that

was not recoverable occurred. A recoverable error means not all methods

were abandoned. A nonrecoverable error means all methods were

abandoned and rollBack was called.

Parameters methodList The list of configured method names to execute.

Remarks Executes a list of configured methods. When a communication object detects

that a trigger condition has been satisfied, it invokes execute and passes it

the list of all configured method names whose trigger condition was satisfied.

For any given stimulus from the target system, execute should be invoked

exactly once. For example, if a value changed in the target system or a

message was received from the target system, all the configured method

names whose trigger conditions were satisfied by that stimulus should be

passed to execute.

See also abandonAllMethods in “elLinkClass::methodInfo” on page 7-28.

elLinkClass::log

log messageType who msgToEval

Return Value Returns the error message that was printed.

Parameters messageType The type of message being logged:

• in A trace of data that was just transmitted from the target system to a

communication object. If trace logging is enabled, the trace will be

written to the trace log. If trace logging is not enabled, the trace will be

ignored.

• out A trace of data that was just transmitted to the target system from

a communication object. If trace logging is enabled, the trace will be

written to the trace log. If trace logging is not enabled, the trace will be

ignored.
7-26

Class Reference

elLinkClass
• to A trace of data that was just passed as an argument to a

communication object’s write method. Communication objects never use

to: only the execute method uses to. If trace logging is enabled, the trace

will be written to the trace log. If trace logging is not enabled, the trace

will be ignored.

• error A message describing a serious error condition that may lead to a

loss of data in the data server or to some other serious malfunction. The

message will be written to the error log and if the user has configured it,

to the trace log as well.

• warning A message describing a malfunction that has been

temporarily corrected or worked around but may lead to incorrect

operation some time in the future. The message will be written to the

error log and if the user has configured it, to the trace log as well.

• verbose A message useful for debugging purposes that describes the

progress of the data server or a communication object. These messages

are written to the error log if the data server was started with the

-verbose command line argument. The message will also be written to

the trace log if the user configured the trace log to include the error log.

who Indicates which subsystem or object is generating the message. In

communication objects, it is almost always $this: the name of the

communication object.

msgToEval The message to evaluate and then print.

Remarks Saves a message to the appropriate log. The log method accepts an

unevaluated string as an argument, therefore complex messages can be

buried inside an unevaluated Tcl list. If the log method determines that the

string should be logged, it first passes the string to the Tcl subst command. In

other words, the code only evaluates the list with the Tcl subst command if the

message is really needed. For example,

Trace the message received from the target system
elLink log in {[

set message {}
foreach field $fieldsFromApplication {

append message “$field:\t$dataFromApplication($field)\n”
}
set message]}

By evaluating the message only when it is about to be printed, the log method

reduces data server processing costs by not spending time creating long

tracing messages only to discard them because tracing is disabled.
7-27

Class Reference

elLinkClass
elLinkClass::methodInfo

methodInfo modifier methodName

Return Value Returns the information specified by modifier and methodName.

Parameters modifier The type of information to retrieve from the configured method:

• variable Returns the variable mapping information as a list of pairs:

{{srcPath1 dstPath1} {srcPath2 dstPath2} ...}

• constant Returns the constant mapping information as a list of pairs:

{{dstPath1 constant1} {dstPath2 constant2} ...}

• select Returns dynamic mapping information as a list of pairs:

{{dstInfo1 srcInfo1} {dstInfo2 srcInfo2} ...}

In this list, srcInfo1 is itself in the form of a list specifying the procedure

name and its arguments:

{procName {arg1 arg2 ...}}

• discard Returns the discard information as a list:

{path1 path2 ...}

• from Returns the name of the communication object providing the

data.

• to Returns the name of the communication object that the data is being

sent to.

• fileName Returns the name of the configuration file containing the

configured method.

• name Returns the human-readable version of the configured method

name.

• error Returns the configured error-handling regimen for mapping and

other errors encountered during execution of the configured method.

error returns one of the following:

 • continue Log the error and try to continue executing the configured

method.

 • abandonMethod Log the error and return without writing anything

to the target system.
7-28

Class Reference

elLinkClass
 • abandonAllMethods Do not log the error, but raise a Tcl error

condition with an informative error message. Your invoker is always

elLinkClass::execute. It will log the error, abandon work on all other

methods, and invoke rollBack for every object that was written to.

methodName The name of the method to retrieve information from.

Remarks Retrieves specific information about a configured method.

elLinkClass::version

version

Return Value Returns the version of software running in the data server.
7-29

Class Reference

elRASpoolerClass
elRASpoolerClass

The elRASpoolerClass inherits from the elSpoolerClass. The

elSpoolerClass loads configuration files created by the configuration tool

and provides utilities to query that configuration (see “elSpoolerClass” on

page 7-34). In addition to the methods provided by the elSpoolerClass, the

elRASpoolerClass implements a random-access (RA) spooler. The RA

spooler is slower than the FIFO spooler. If message limits are specified, older

messages will be discarded to make room for newer messages.

Caution File system block sizes cannot be reliably determined over NFS between

different vendor's computers, and the RA spooler uses the file system block

size to calculate how much space each message consumes. If your spool file

is accessed through NFS, the RA spooler size calculations may malfunction

and your spool file may consume either much more or much less space than

you configured.

Message identification names must not contain ‘,’ ‘/’ or ‘.’ characters.

elRASpoolerClass Methods

constructor Creates an instance of the RA spooler and initializes it.

match
Returns the identification names of all the spooled messages that match the
starname-expression globExpr.

print
Prints a representation of the spool object and of the spooled messages for
debugging.

read Reads the spooled message identified by id.

remove Removes the message identified by id from the spooler.

write Writes the message identified by id to the spooler.
7-30

Class Reference

elRASpoolerClass
elRASpoolerClass::constructor

elRASpoolerClass spooler configFileName spoolFileName

[-errorHandling error|warning]

Return Value No return value is defined.

Parameters spooler The name of the spooler object to create. The remaining

parameters are the same as the ones for “elSpoolerClass::constructor” on

page 7-34.

Remarks Creates an instance of the RA spooler and initializes it.

elRASpoolerClass::match

match globExpr

Return Value Returns the identification names of all the spooled messages that match the

star-name expression globExpr.

Parameters globExpr The name of the star-name expression to match spooled

messages with.

Remarks For additional information, refer to the string match command in your Tcl

documentation.
7-31

Class Reference

elRASpoolerClass
elRASpoolerClass::print

print fd

Return Value No return value is defined.

Parameters fd The name of the file descriptor to print to. If fd is not specified, the file is

printed to stdout.

Remarks Prints a representation of the spool object and of the spooled messages for

debugging.

elRASpoolerClass::read

read id

Return Value Returns the spooled message identified by id. If the message identified by id

does not exist, returns an error.

Parameters id The identification name of the spooled message to be read.

Remarks Reads the spooled message identified by id. The message read is not

removed from the spool.

elRASpoolerClass::remove

remove id

Return Value No return value is defined.

Parameters id The identification name of the message to be removed from the spooler.

Remarks Removes the message identified by id from the spooler. Returns successfully,

even if the message identified by id does not exist.
7-32

Class Reference

elRASpoolerClass
elRASpoolerClass::write

write message id

Return Value No return value is defined.

Parameters message The message to be written to the spooler.

id The identification name of message.

Remarks Writes the message identified by id to the spooler. If the write causes an

error, the error will be handled as specified by the elSpoolerClass::error

Handling method.

See Also “elSpoolerClass::errorHandling” on page 7-35.
7-33

Class Reference

elSpoolerClass
elSpoolerClass

This is the spooler base class for the elFIFOSpoolerClass and the

elRASpoolerClass. This class loads configuration files created by the

configuration tool and provides utilities to query that configuration.

elSpoolerClass Methods

elSpoolerClass::constructor

elSpoolerClass::constructor configFileName spoolFileName

[-errorHandling error | warning]

Return Value No return value is defined.

Parameters configFileName The name of the file the configuration tool created that

contains the configuration for this spooler object.

spoolFileName The name of the file to contain the spooled data.

-errorHandling Specifies an initial value for the

elSpoolerClass::errorHandling method.

Remarks elSpoolerClass::spooler is the syntax for invoking the base class

constructor from within a constructor in a derived class. The base class

constructor loads the configuration file and performs general initialization.

See Also “elSpoolerClass::errorHandling” on page 7-35.

constructor Creates an instance of the spooler and initializes it.

errorHandling Sets the error handling regime for the spooler.

isEnabled Returns 1 if the spooler is enabled, 0 otherwise.

maxByteCount Returns the maximum number of bytes the spool file is configured to contain.
7-34

Class Reference

elSpoolerClass
elSpoolerClass::errorHandling

errorHandling error warning

Return Value If a parameter is not specified, the current parameter is returned.

Parameters error Raises a Tcl error condition whenever a message is about to be

discarded and does not discard the message. This means that if the spooler is

full, you cannot add messages to the spooler until you remove some old ones.

warning Logs a warning message to the error log whenever a message is

about to be discarded, then discards the message.

Remarks Sets the error handling regime for the spooler.

elSpoolerClass::isEnabled

isEnabled

Return Value Returns 1 if the spooler is enabled, 0 otherwise.

elSpoolerClass::maxByteCount

maxByteCount

Return Value Returns the maximum number of bytes the spool file is configured to contain.
7-35

Class Reference

yourIntfClass
yourIntfClass

You must write this interface class. See Chapter 4, “Developing the

Configuration Tool Communication Object,” for procedures and examples.

The configuration tool uses yourIntfClass to interface to a target system.

This class provides methods that allow the configuration tool to determine

what functionality this communication object supports, methods to handle

system-specific configuration tool command-line parameters, and methods to

open a view into the target system’s name space.

yourIntfClass Methods

abortNameSpaceLoad Aborts the current name-space load in progress.

consumeOptions Processes command-line arguments.

getChildren Returns the child node names as a Tcl list.

list2path Converts a Tcl list to a path string.

loadNameSpace Loads the target system’s name space.

open Loads configuration information and prepares the object for use.

options Gets or sets command-line option keywords.

path2list Converts a path string to a Tcl list.

selectionProcedures Retrieves, deletes, executes and creates selection procedures.

supports Indicates whether or not a feature is supported.

usage Returns command-line usage information.

writeNameSpace Saves the currently loaded name space to a file.
7-36

Class Reference

yourIntfClass
yourIntfClass::abortNameSpaceLoad

abortNameSpaceLoad

Return Value No return value needs to be defined.

Remarks Your abortNameSpaceLoad method must stop the currently active name

space load activity.

If the loadNameSpace method is defined, this method must also be defined.

If the loadNameSpace method is not defined, you do not need to define this

method.

The configuration tool invokes this method when the user presses the Cancel

push button on the Name-Space Load Status window. The configuration tool

automatically created the Name-Space Load Status window when it invoked

the loadNameSpace method.

yourIntfClass::consumeOptions

consumeOptions var_name

Return Value No return value needs to be defined.

Parameters var_name The name of the variable containing the list of command-line

options.

Remarks Your consumeOptions method must parse the global variable $var_name

for command-line options specific to this class and remove any that are

found.

Use the utlPeekArg and utlGetArg utilities to parse and remove recognized

command-line options.

The configuration tool invokes this method to allow the communication

object to remove any command-line options it is interested in.
7-37

Class Reference

yourIntfClass
yourIntfClass::getChildren

getChildren [-filter pattern] node

Return Value Must return the names of children nodes for the target system’s name space

as a Tcl list.

Parameters -filter pattern Only return names of children that match pattern.

node Full path name to the desired parent node, expressed as a Tcl list.

Remarks Your getChildren method must get the names of the children under $node.

The returned list of child names must only include each child’s name and not

any path information.

By definition, the root node of the name-space tree is the empty string.

Therefore, [$yourIntf getChildren “”] returns the names of all nodes lying

directly under the root node.

The configuration tool invokes this method whenever it needs to acquire the

names of children nodes. For a given parent node, if the dynamic name

space flag in the supports method is set to 0, this method will be invoked

only once. Alternately, if the dynamic name space flag is set to 1, this

method may be invoked more than once to check for new and deleted nodes.

yourIntfClass::list2path

list2path list

Return Value Must return the human-readable version of $list.

Parameters list A Tcl list that specifies a path in the logical name space.

Remarks Your list2path method must convert $list into something that makes sense

for your end users.

This method is the opposite of path2list.
7-38

Class Reference

yourIntfClass
The configuration tool invokes this method to format paths expressed as Tcl

lists into syntax more easily understood by the user. Usually, this more easily

understood syntax is simply the native syntax used for paths in the target

system.

See Also “yourIntfClass::path2list” on page 7-41

yourIntfClass::loadNameSpace

loadNameSpace [-command cmd] [-statusCommand scmd]

Return Value No return value needs to be defined.

Parameters -command cmd The Tcl command to execute after the transfer is

complete.

-statusCommand scmd The Tcl command to periodically execute while

the transfer is in progress.

Remarks Your loadNameSpace method must start the transfer of name-space data

from the target system to the configuration tool, then return without waiting

for the transfer to complete. Your writeNameSpace method should save this

name-space data to a file.

If you do not need to explicitly load name-space data, you can disable the

name-space loading functionality for the target system by setting the name

space loading flag in the supports method to 0. If you disable name-space

loading in the supports method, you do not need to define this method.

Follow these guidelines:

• scmd should be run periodically by this communication object as the load

progresses.

• cmd must be run by this communication object once the transfer has

completed.

• All occurrences of %message in scmd must be replaced by the status

message just prior to the execution of scmd.
7-39

Class Reference

yourIntfClass
• All occurrences of %error in cmd must be replaced by 0 if no errors

occurred and 1 if errors occurred, just prior to the execution of cmd. If

errors occurred, all occurrences of %message in cmd must be replaced by

the error message just prior to the execution of cmd.

The configuration tool invokes this method when the user chooses the Load

Name-space menu item from the main window’s Control menu. The

configuration tool creates and displays a Status window and arranges for this

window to update whenever scmd and cmd execute.

See Also “yourIntfClass::supports” on page 6-37 and “yourIntfClass::writeNameSpace”

on page 7-45.

yourIntfClass::open

open [-configDir name] [-debug] [-stub][-verbose]

Return Value No return value needs to be defined.

Parameters -configDir name Set the configuration directory to name, which is the

full directory path name to the current object’s configuration g23.

-debug Print debug messages to stderr. This option can be useful to

communication object developers for debugging.

-stub Fake the connection to the target system and generate some

plausible name-space information. This can be useful for testing.

-verbose Print status messages to stderr. This option can be useful to end

users for debugging.

Remarks Your open method must open a connection to the target system.

The configuration tool invokes this method to open a connection to the target

system. This connection will be used to obtain name-space information.
7-40

Class Reference

yourIntfClass
yourIntfClass::options

options optkeys

Return Value Must return the current command-line option keyword names as a Tcl list.

Parameters optkeys New names for command-line option keywords as a Tcl list.

Remarks Your options method must get and set the command-line option keywords

supported by this object. If the $optkeys parameter is not supplied, this

method must return the list of currently supported command-line option

keywords. If $optkeys is supplied, this method must set the keywords used

for command-line options. In this case, the number of items in $optkeys must

exactly match those in the returned list.

The configuration tool invokes this method to determine what command-line

option keywords are currently supported and also to assign new command-

line option keywords when there are keyword collisions with either the

configuration tool’s command-line option keywords or some other

communication object’s command-line option keywords.

yourIntfClass::path2list

path2list path

Return Value Must return the Tcl version of $path.

Parameters path The path to convert to a Tcl list.

Remarks Your path2list method must convert $path to a Tcl list. This method must

implement exactly the opposite conversions that are implemented in the

list2path method.

The configuration tool invokes this method to convert paths expressed with a

syntax more easily understood by the user to paths expressed as Tcl lists.

See Also “yourIntfClass::list2path” on page 7-38
7-41

Class Reference

yourIntfClass
yourIntfClass::selectionProcedures

selectionProcedures

selectionProcedures procedureName

selectionProcedures procedureName arguments

selectionProcedures procedureName arguments body apiVersion

Return Value The selectionProcedures method without parameters must return the

names of all available selection procedures as a Tcl list of zero or more

three-item lists:

{<procedureName> <arguments> <apiVersion>} {<procedureName> <arguments>
<apiVersion>} ...

The Tcl list should include selection procedures originating in both the

communication object and the data server.

The selectionProcedures method with only the procedureName parameter

must return a Tcl list of the names of deleted procedures:

<procedureName> <procedureName> ...

The selectionProcedures method with the procedureName and arguments

parameters must return the selection procedures invoked, error messages

encountered, and the selected sources as a Tcl list of zero or more two-item

lists:

{{<procedureName> <arguments>} {errCode} {<selectedSources>}}
{{<procedureName> <arguments>} {errCode} {<selectedSources>}} ...

The selectionProcedures method with the procedureName, arguments,

body and apiVersion parameters returns a Tcl list of the newly created

selection procedures:

<procedureName> <procedureName> ...

Parameters procedureName The name of the selection procedure.

arguments The arguments used by the selection procedure.

body The body text defining the selection procedure.

apiVersion The application programming interface (API) version of

arguments and the values they return. In the E.02.20 version of Enterprise

Link, the API version is 1.
7-42

Class Reference

yourIntfClass
Remarks The selectionProcedures method is invoked by the configuration tool in

order to query, create, execute, and delete selection procedures.

If only procedure names are supplied as a parameter, this method deletes

selection procedures. If procedure names and arguments are supplied, this

method executes selection procedures. If procedure names, procedure

arguments, procedure bodies, and API versions are supplied, this method

creates selection procedures.

yourIntfClass::supports

supports receive data | transmit data | access | trigger | trigger focus |

receive spooling | transmit spooling | dynamic name space | name space

loading | selection procedures

Return Value If a parameter is not supplied, the supports method must return a list of all

parameters that are potentially supported. If a parameter is supplied, the

supports method must return 1 if the parameter is supported and 0 if it is not.

Parameters • receive data The flow of data from the target system to the data server.

A return value of 0 disables the Edit Method window’s Direction/system 1-

to-system 2 radio button.

• transmit data The flow of data from the data server to the target

system. A return value of 0 disables the Edit Method window’s

Direction/system 2-to-system 1 radio button.

• access The display and editing of access information. A return value

of 1 adds an “Access” menu item to the main window’s Edit menu.

Whenever this menu item is chosen, the Access window is displayed via

the yourIntfAccessGui procedure.

• trigger The display and editing of system-specific trigger information.

A return value of 1 adds a system-specific Trigger panel to the Trigger

window.

• trigger focus An Edit Mapping window focus policy. A return value of 1

allows a branch in the appropriate Edit Mapping window to be shown in a

highlighted color.
7-43

• receive spooling The spooling of data received from the target system.

A return value of 0 disables a spooling item on the main window’s

Edit/Spooling cascade menu.

• transmit spooling The spooling of data sent from the data server to

the target system. A return value of 0 disables a spooling item on the main

window’s Edit/Spooling cascade menu.

• dynamic name space A changing (dynamic) name space. A return

value of 1 causes the configuration tool to check for new and deleted

nodes when getting the children of a node.

• name space loading The manual loading of name-space information. A

return value of 1 adds a “Load Name-space” menu item to the main

window’s Control menu. Whenever this menu item is chosen, the

loadNameSpace method is invoked.

• selection procedures Selection procedures. A return value of 0 dims

the Select checkbox in the Edit Mapping window.

Remarks Your supports method should return 0 if the functionality specified by each

parameter is unrecognized. The configuration tool invokes this method to

determine the facilities provided by this communication object.

yourIntfClass::usage

usage

Return Value Must return a list of Tcl lists: {{arg1summary arg1details} ...}

Remarks Your usage method must return a list containing command-line argument

usage information.

The configuration tool invokes this method when it needs to print a usage

message due to command-line syntax errors.

Class Reference

yourIntfClass
yourIntfClass::writeNameSpace

writeNameSpace

Return Value No return value needs to be defined.

Remarks Your writeNameSpace method must save the currently loaded name space

to a file.

The loadNameSpace method invokes this method.
7-45

Class Reference

yourIntfClass
7-46

8

8 Utility Reference

Utility Reference
This chapter documents the Enterprise Link utilities. These utilities provide

routines that simplify developing the configuration tool and data server

communication objects.

Note The return value for many of the methods in this chapter is “No return value

is defined.” Without an explicit “return” statement, a Tcl function returns

whatever value happened to be returned by the last command used in the

function. This means that no particular return value is defined: the method

does not consistently return anything. Your code should not rely on any

values returned from a method with no defined return value, since the

method may return some different value in a future release of Enterprise

Link.

Utility Name Description Page

elFindServer Finds a running data server. 8-6

elLeaveObjectHan
Manages Tcl scripts that are called when the current object is no
longer being edited.

8-7

elLinkTriggerTimeout Prepares to handle timer timeout events for $methodName. 8-8

elNSpaceGUI
Creates, configures and displays the Configuration Tool’s Edit Name
Space dialog.

8-9

utlAbsPath
Converts any file path specification into an absolute file path
specification.

8-16

utlArgEnd
Checks the calling procedure's args variable for unprocessed
parameters.

8-43

utlBusyCursor Changes the cursor to an hourglass sprite. 8-17

utlCanonicalizeList Converts a Tcl list into canonical (standard) form. 8-19

utlChkAlpha
Checks the validity of string, generating an error if string is empty or
invalid.

8-20

utlChkCfgFileRev Checks the revision of the just-sourced configuration file. 8-21

utlChkInt Checks the validity of number, generating an error if number is invalid. 8-23

utlChkName Checks the validity of name, generating an error if name is invalid. 8-24
8-2

Utility Reference
utlClicksPerMilliSecond
Computes the number of clock clicks per millisecond for the host
machine.

8-25

utlClose Closes files. 8-55

utlCompleteEntryMsg Temporarily displays an informative message in the entry widget. 8-27

utlCompleteGui Creates, configures, and displays the completion window. 8-28

utlCurrentTime Retrieves the current date and time for a specified time zone. 8-30

utlDecrypt Decrypts encrypted character strings. 8-33

utlEncrypt Encrypts character strings. 8-33

utlEnvVarName Allows platform-independent access to environment variable names. 8-34

utlExitHan Manages Tcl scripts that are called when the target system exits. 8-35

utlFileCopy Copies contiguous blocks of bytes from one region of a file to another. 8-36

utlFilter Filters list, removing any items not matching pattern. 8-37

utlFnameToStr Converts a file name to a string. 8-38

utlFocusTraversal
Arranges for the current input focus to traverse the supplied list of Tk
widgets.

8-39

utlFormatTime Generates a formatted date and time string. 8-40

utlGetArg Processes Tcl procedure parameters. 8-43

utlGetArray Extracts a value from a nested array. 8-46

utlHelpGui Creates, configures, and displays the help window. 8-47

utlIdleCursor Restores the mouse cursor back to its original sprite. 8-17

utlIsNull Determines if variable is empty. 8-48

utlIsPanel Determines if panel is a valid Tk control panel. 8-49

utlJoinPathVar
Converts a Tcl list of paths into a single path value that can be
assigned to the path environment variable.

8-50

utlList2Path Converts a Tcl list to a path specification. 8-51

utlMkPanelEpilogue Finishes window construction. 8-52

utlMkPanelPrologue Starts window construction. 8-52

Utility Name Description Page
8-3

Utility Reference
utlMkPanelVisible Makes an existing window visible to the end user. 8-52

utlNls Returns a localized string. 8-54

utlOpen Opens files. 8-55

utlPath2List Converts a path specification to a Tcl list. 8-57

utlPathVarSeparator
Returns the character used to separate the components of a path
environment variable.

8-58

utlPattern2RegExp Converts a pattern into a regular expression. 8-59

utlPeekArg Parses the calling procedure’s args variable. 8-43

utlPrepareWidget Prepares the specified widgets for display. 8-60

utlPrintArray Prints multi-dimensional array variables to an open file descriptor. 8-62

utlSetArray Sets a value in a nested array. 8-63

utlSharedLibVarName
Returns the name of the environment variable used for shared library
search paths on the host platform.

8-65

utlShiftTimeZone Converts a date/time string from one time zone to another. 8-66

utlSplitPathVar
Converts the value of a path environment variable into a Tcl list of
paths.

8-68

utlStrAlign Pads the supplied strings with space characters. 8-69

utlStrToFname Converts a string to a file name. 8-70

utlTableHeader Initiates table construction. 8-71

utlTablePut Prints the table. 8-71

utlTableRow Adds one row of data to the table. 8-71

utlTimerNextTimeout Finds the next timeout date. 8-73

utlTimerQuery Retrieves timer information. 8-76

utlTimerStart Starts a one-shot or periodic timer. 8-77

utlTimerStop Stops the specified timer. 8-79

utlUnsetArray Deletes multi-dimensional array variables. 8-80

utlWidgetState Enables and disables Tk widgets. 8-81

Utility Name Description Page
8-4

Utility Reference
utlWidgetText Returns the user-visible text that identifies the specified widget. 8-82

yourIntfCompletionList Composes a list of completions. 8-83

Utility Name Description Page
8-5

Utility Reference
elFindServer

Finds a running data server.

Synopsis elFindServer service

Description elFindServer finds a running data server and returns a file descriptor for a

dp_RPC connection to the data server. The data server’s port name or

number is configured to be service. A Tcl error is raised if no such server is

running.

The service parameter is the service name or port number assigned to the

data server in the configuration tool’s Data Server Configuration window.

Return Value No return value is defined.
8-6

Utility Reference
elLeaveObjectHan

Manages configuration tool Tcl scripts that are called when the current

configured object is no longer being edited.

Synopsis elLeaveObjectHan {-delete id] id command

Description elLeaveObjectHan manages Tcl scripts that are called when the current

configured object is no longer being edited. It can add new handler scripts,

delete existing handler scripts, return an existing handler script, or execute

all defined handler scripts.

If elLeaveObjectHan is called without any parameters, it executes all

currently defined handler scripts.

If the -delete option and id parameter are supplied, it deletes the handler

script associated with this id.

If only the id parameter is suppled, it returns the handler script associated

with this id.

If both the id and command parameters are supplied, it defines the Tcl script

command as a new handler script, replacing any that existed with the same

id.

Return Value Returns the handler script associated with this id if only the id parameter is

supplied. Otherwise, no return value is defined.
8-7

Utility Reference
elLinkTriggerTimeout

Prepares to handle timer timeout events for $methodName.

Synopsis triggerTimeout methodName prefix

Return Value No return value is defined.

Parameters methodName The name of the method to trigger.

prefix The trigger variable prefix string.

Remarks Prepares to handle timer timeout events for $methodName. When a timeout

occurs, the elLinkClass::execute method is invoked.

The trigger configuration variables needed by this routine can be defined by

sourcing a trigger configuration file (*.trig). The names of these variables

must begin with the string specified by prefix.
8-8

Utility Reference
elNSpaceGui

Creates, configures and displays the Configuration Tool’s Edit Name Space

window utility.

Synopsis elNSpaceGui [-attrCompletionProc name][-attrDefaultValueProc

name][-applyProc name][-revConvertProc name][-attrNames names]

[-attrCompletionStyle style][-attrPrintFormats fmts][-fileName

file_name][fileNameProc name][-helpOnAttrsText text]

[-helpOnAttrsWindowText text][-helpOnWindowText text]

[-loadNameSpaceCmd name][-prefix prefix]

[-title title][-unotesFileName file_name] panelName

Description Creates, configures and displays the Configuration Tool’s Edit Name Space

dialog window. This procedure provides communication object developers

with a ready-made Name Space Editor. End users use this editor to add,

modify and delete branches of the name space, as well as to modify name

space attribute values. The Name Space Editor contains two important

windows:

• Edit Name Space window. Branches of the name space are added,

modified and deleted using this window. This is the window initially

displayed when elNSpaceGui is called.

• Edit Name Space Attributes window. Attribute values are modified using

the Edit Name Space Attributes window. This window can be displayed

by choosing Attributes... from the Edit Name Space window’s Edit menu.

Attributes are displayed as a two column table, with attribute names on

the left, and corresponding attribute values on the right. The end user

must complete four steps to modify the value of an address’s attribute.

First, the desired address must be selected on the Edit Name Space

window. The second step is to select the desired attribute on the Edit

Name Space Attributes window. Then, the displayed attribute value can

be edited to the new value. The final step is to press the Modify push

button.

The panelName parameter specifies a name to use for the Edit Name Space

window instance. It is best if the panel names are unique and have some

reference to the communication objects. This can be done by embedding the

name of the communication object in the panel name, for example:

.edit_SAP_nspace
8-9

Utility Reference
Options The -attrNames names option is used to specify the names of the attributes

associated with a name space. -attrNames names is a TCL list of one or

more attribute names. Attribute names are displayed in the Edit Name Space

Attributes window in the same order as they appear in the TCL list. The

following example specifies the attributes “myAttr1”, “myAttr2’, and

‘myAttr3”.

-attrNames [list “myAttr1” “myAttr2” “myAttr3”]

If the -attrNames names option is omitted, the Edit Name Space utility

assumes the name space has no attributes, and thus does not provide an Edit

Name Space Attributes window.

The -attrCompletionProc name option is used to specify the name of a

procedure that returns the possible attribute value completions. These value

completions are for text typed into the Edit Name Space Attribute window’s

attribute value text editor. The -attrCompletionProc name procedure is

called whenever the end user presses the ESC key in the attribute value text

editor. The synopsis for this user-written procedure is shown below:

[name][address][attr_name]

where:

[name] is the procedure’s name

[address] is the currently selected address expressed as a TCL list

[attr_name] name of the currently selected attribute

The procedure is expected to return a TCL list of zero or more possible

attribute values.

The -attrCompletionStyle style option is used to specify the text

completion behavior of the attribute value text editor in the Edit Name Space

Attributes window. -attrCompletionStyle style is a TCL list of the following

two keywords: NORMAL and SUFFIX. Attributes whose values are addresses

should use the SUFFIX keyword. For other attributes, the NORMAL keyword

should be used. There should be one item in the -attrCompletionStyle style

list for each related item in the names list supplied to the -attrNames names

option.
8-10

Utility Reference
The -attrDefaultValueProc name option is used to specify the name of a

procedure that returns the default value for a specified address and attribute.

This procedure is called whenever the end user creates new addresses. The

synopsis for this user-written procedure is shown below:

[name][address][attr_name]

where:

[name] is the procedure’s name

[address] is the currently selected address expressed as a TCL list

[attr_name] name of the currently selected attribute

The procedure is expected to return a default value for the supplied address

and attribute.

The -applyProc name option is used to specify the name of a procedure that

is invoked whenever the Edit Name Space window’s Apply push button is

pressed. For example, this hook allows your communication object to

convert the configured name space in it’s new layout as it is currently

displayed in the Edit Name Space window. The name procedure updates the

logical name space displayed in the Edit Mapping window. The synopsis for

this user-written procedure is shown below:

[name]

where:

[name] is the procedure’s name

The value returned by this procedure is ignored.

The -revConvertProc name option is used to specify the name of a

procedure that converts name space configuration files from an old format

which was shipped in a previous release of the product, to the current

format. This procedure is called whenever the name space configuration file

is loaded. The synopsis for this user-written procedure is shown below:

[name]

where:

[name] is the procedure’s name

The value returned by this procedure is ignored.
8-11

Utility Reference
The -loadNameSpaceCmd name option is used to load name space data

from the Communication object. The TCL command name is executed

whenever the Edit Name Space window’s Load Name Space command is

chosen from the Control menu. (See “Developing the loadNameSpace

Method” on page 4-18).

The -title title option is used to specify the title of the Edit Name Space

window. You can give this window a title that will reflect what the end user is

doing in that window. Set up the title like this example:

“my -- Edit Name Space”

Or, if you want NLS support, set it up like this example:

[utlNls “my -- Edit Name Space”]

The -fileName file_name option is used to specify the name of the

configuration file to which name space data is stored when the end user

presses the apply push button. The configuration file is part of the current

configuration object. Set up the file_name like this example:

my_namespace_file

If you wish to store the configuration file in some directory other than the

current configured object’s configuration directory, specify that directory. If

a directory path is specified, that will be where the name space data is stored.

In the diagram below, the name space configuration file is where the name

space data is stored.

Edit Name Space Name space

Structural text file

Text file displaying

apply

load

export

import

print

window

configuration file

name space data in

a hierarchy and an

attributes table
8-12

Utility Reference
The -fileNameProc name option is executed whenever you need to refer to

the name of the configuration file. -fileNameProc name overrides the

-fileName name option. The procedure name is called as shown below:

[name]

where:

[name] is the procedure’s name

name is expected to return a full file path name as a character string.

The -attrPrintFormats fmts option is used to specify how to format

attribute values when printing them. -attrPrintFormats fmts is a TCL list of

format specifications. Formatted values will be displayed in a text file

specified by the end user. A format must be assigned to every attribute name

given from the -attrNames name list.

This option is usually used to restrict the width of values that are many

characters long. Since attribute values are displayed in a table, the table’s

columns must be formatted so that each column is reasonably wide enough

for the end user to view the values easily.

Each list-item can either be:

Specification Layout of print format Example

An empty TCL list No column width limit. Columns can be as wide as the widest
value.

[]

A positive integer number Column width is restricted to the maximum width that you
specify. Values wider than this limit will be broken into multiple
lines for display purposes.

8

Two positive integer
numbers in the form of a
TCL list: {<soft limit>
<hard limit>}

Column width is specified by both soft and hard limits.
Attribute values will be broken into multiple lines at white
space characters to achieve the soft limit, but if there is no
appropriate white space, the hard limit will be applied.

{20 30}

The keyword “SETTINGS” Settings of token oriented sequences will be broken into
multiple lines so that there is one token/flag per line. A token
oriented sequence might be:
my_token=<value> token2=<value2> flag1

In multiple lines these sequences become:
my_token=<value>
token2=<value2>
flag1

SETTINGS
8-13

Utility Reference
The -helpOnWindowText text, -helpOnAttrsWindowText text and the

-helpOnAttrsText text options are used to specify the raw text for three

particular online Help files in the Name Space Editor. Although each window

in the Name Space Editor has a Help menu, the two windows that these three

options apply to are the:

1. Edit Name Space window.

2. Edit Name Space Attributes window.

The -helpOnWindowText text option identifies the online Help text for the

Edit Name Space window. This help text describes how to use the Edit Name

Space window.

The -helpOnAttrsWindowText text option identifies the online Help text

for the Edit Name Space Attributes window.

The -helpOnAttrsText text option identifies the online Help text for the

attributes on the Edit Name Space Attributes window. This text describes the

meaning of each attribute in the Edit Name Space Attributes window.

The -unotesfileName file_name option is used to specify the name of the

file in which the end user’s notes for the online help files will be stored. The

end users can write their own notes for later viewing in the user notes area

on the online Help windows. An example of how to specify the file_name

option is:

my_usernotes_file

The -prefix prefix option is used to specify which data structures will hold

the Name Space Editor. Specify the initial letters of your communication

object. By doing this, you are attaching any changes made to the name space,

to your communication object. When the name space structure is edited in

the Edit Name Space window, the data structure changes as well. The TCL

array variables created and managed by the Edit Name Space window are:

<prefix>nspace_tree

<prefix>nspace_attributes

The double dash (- -) option marks the end of options. The double dash (- -)

removes the special meaning of the parameter that follows it. For example,

for the function “create”:

create -- -file
8-14

Utility Reference
Placed in front of -file, the double dash make sure that -file can be

separated from it’s special meaning. The argument following a (- -) will be

treated as character string even if it starts with a (-).

Return Value The return value for elNSpaceGui is undefined.

See also “utlNls” on page 8-54.

Example The following example brings up a name space editor for the hypothetical

“MY” communication object:

MYAttrCompletionProc {address attr_name} {

set items [compose list of possible attribute values here]

return $items

}

MYAttrDefaultValueProc {address attr_name} {

return [default value for given address and attribute name]

}

MYApplyProc {} {

[update any caller-created windows that display the current name space]

}

MYNSpaceCfgConvertProc {} {uplevel 1 {

--- fetch the config-file's revision number ---

upvar 0 ${pre}nspace_config_rev config_rev

--- convert rev 1 files to rev 2 ---

if {$config_rev == 1} {

[convert configuration rev 1 to rev 2 here]

set config_rev 2

}

--- convert rev 2 files to rev 3 ---

if {$config_rev == 2} {

[convert configuration rev 2 to rev 3 here]

set config_rev 3

}

}}
8-15

Utility Reference
utlAbsPath

Converts any file path specification into an absolute file path specification.

Synopsis utlAbsPath path dir

Description utlAbsPath determines the absolute path denoted by path relative to dir. If

dir is omitted, the directory returned by the Tcl command [pwd] is used.

Return Value Returns the full (absolute) file path name.
8-16

Utility Reference
utlBusyCursor,

utlIdleCursor

Temporarily changes the sprite used for the mouse cursor to an hourglass.

Synopsis utlBusyCursor level

utlIdleCursor [-force]

Description utlBusyCursor changes the cursor to an hourglass sprite, while

utlIdleCursor restores the mouse cursor back to its original sprite.

Calls to utlBusyCursor and utlIdleCursor can be nested. Passing

utlIdleCursor the -force option collapses all nesting and forces the cursor

back to its original sprite. Passing utlBusyCursor the level parameter sets

the resulting nesting level to level.

Whenever you need to temporarily set a busy cursor back to its original

sprite, call utlIdleCursor -force and note the return value. Later, when you

are ready to restore the cursor back to an hourglass sprite, call

utlBusyCursor level using the value returned by the previous call to

utlIdleCursor for level.

Return Value utlIdleCursor returns the busy-cursor nesting level in effect just before this

call.

utlBusyCursor returns the busy-cursor nesting level in effect just after this

call.

Caution The maximum time that the mouse cursor remains an hourglass sprite is 90

seconds. After 90 seconds, the cursor automatically reverts back to its

original sprite and the busy-cursor nesting level collapses to zero.

Errors that occur while the mouse cursor is displayed as an hourglass sprite

cause the cursor to revert back to its original sprite and the busy-cursor

nesting level to collapse to zero. This is done in the utility-library-supplied

error handler procedure.

All calls to utlIdleCursor while the mouse cursor is not busy are ignored.
8-17

Utility Reference
Example # start the slow task
utlBusyCursor
< start doing your time-consuming task here >

ask the end-user a question along the way
set orig_nesting [utlIdleCursor -force]
< do an interactive query with the end-user here >
utlBusyCursor $orig_nesting

< do more time consuming stuff here >

slow task is done!
utlIdleCursor
8-18

Utility Reference
utlCanonicalizeList

Converts a Tcl list into canonical (also known as standard) form.

Synopsis utlCanonicalizeList name

Description Finds the standard representation for a named list in the caller’s context. For

example, extra white space between items is removed and quoted items are

converted to brace-delimited items.

Return Value The canonical (standard) representation of the list.
8-19

Utility Reference
utlChkAlpha

Checks the validity of string, generating an error if string is empty or invalid.

Synopsis utlChkAlpha [-comment com] [-expected exp] string err_text

Description utlChkAlpha checks the validity of string, generating an error if it detects

one of the following:

• string is empty.

• string does not match one of the items in the list <exp>.

The err_text parameter is text that identifies which entry widget on a window

contains the erroneous value and is usually the text returned by a call to

utlWidgetText.

If the -comment com option is supplied, com replaces the initial error text in

the generated error message.

If the -expected exp option is supplied, string must exactly match one of the

items in the Tcl list specified by exp.

Return Value No return value is defined.

See Also “utlChkInt” on page 8-23, “utlChkName” on page 8-24, “utlChkCfgFileRev” on

page 8-21, and “utlWidgetText” on page 8-82.
8-20

Utility Reference
utlChkCfgFileRev

Checks the revision of the just sourced configuration file.

Synopsis utlChkCfgFileRev rev_var_name expected_rev fname

Description utlChkCfgFileRev checks the revision of the just-sourced configuration file,

generating an error if it detects one of the following:

• The variable specified by rev_var_name does not exist.

• The value of the variable specified by rev_var_name does not equal

expected_rev.

The rev_var_name parameter is the name of the variable containing the

configuration file's revision number.

The expected_rev parameter is the expected value of the variable specified by

rev_var_name.

The fname parameter is the full path name of the configuration file just

sourced.

Return Value No return value is defined.
8-21

Utility Reference
Example The following example loads a configuration file by sourcing it. Once the file

is sourced, this utility checks that the variable my_config_rev was created

and that it has the right value.

proc myCfgLoad {} {

global el_app_cfg_subdir \
el_app_obj_name \
my_cfg_file_name \
my_config_app_rev \
my_password \
my_user_name

compose file name
set fname \

"${el_app_obj_name}${el_app_cfg_subdir}/$my_cfg_file_name"

if the specified config file does not exist or is empty
if {([file exists $fname] != 1) || ([file size $fname] == 0)} {

< assign default values to `my_password' and ‘my_user_name’
here >
return

}

load the configuration
set _prefix "my_"
source $fname

utlChkCfgFileRev “my_config_rev” $my_config_app_rev $fname
}

See Also “utlChkAlpha” on page 8-20, “utlChkInt” on page 8-23, and “utlChkName” on

page 8-24.
8-22

Utility Reference
utlChkInt

Checks the validity of number, generating an error if number is invalid.

Synopsis utlChkInt [-comment com] [-min num] [-max num] number err_text

Description utlChkInt checks the validity of number, generating an error if it detects

one of the following:

• number is empty.

• number is not an integer numeric value.

• number is greater than max.

• number is less than min.

err_text is text that identifies which entry widget on a window contains the

erroneous value and is usually the text returned by a call to utlWidgetText.

If the -comment com option is supplied, com replaces the initial error text in

the generated error message.

If the -min num option is supplied, num specifies the minimum valid value

for number.

If the -max num option is supplied, num specifies the maximum valid value

for number.

Return Value No return value is defined.

See Also “utlChkAlpha” on page 8-20, “utlChkName” on page 8-24, “utlChkCfgFileRev”

on page 8-21, and “utlWidgetText” on page 8-82.
8-23

Utility Reference
utlChkName

Checks the validity of name, generating an error if name is not a valid Tcl

variable name.

Synopsis utlChkName [-comment com] name err_text

Description utlChkName checks the validity of name, generating an error if it detects

one of the following:

• name is empty.

• name does not begin with an alphabetic character.

• name contains nonprinting characters.

The err_text parameter is text that identifies which entry widget on a window

contains the erroneous value and is usually the text returned by a call to

utlWidgetText.

If the -comment com option is supplied, com replaces the initial error text in

the generated error message.

Return Value No return value is defined.

See Also “utlChkAlpha” on page 8-20, “utlChkInt” on page 8-23, “utlChkCfgFileRev” on

page 8-21, and “utlWidgetText” on page 8-82.
8-24

Utility Reference
utlClicksPerMilliSecond

Computes the number of clock clicks per millisecond for the host machine.

Synopsis utlClicksPerMilliSecond

Description Computes the number of clock clicks per millisecond for the host machine.

Return Value The number of clock clicks per millisecond.
8-25

Utility Reference
utlCompleteEntry

Handles completion for Tk entry widgets.

Synopsis utlCompleteEntry [-errScheme] [-title title] [-wait]

panel widget choices

Description utlCompleteEntry handles completion for Tk entry widgets. It completes

the entered value if unique, otherwise it displays a list of matching

completions. This utility is a wrapper around the utility utlCompleteGui.

The -errScheme option causes the completion window to use the “error”

color scheme.

The -title title option sets the title for the completion window to title.

The -wait option causes utlCompleteEntry to return only when an item has

been selected from the completion list. If there is only one possible

completion, utlCompleteEntry returns immediately.

The panel parameter specifies the name to assign to the completion

window's top-level window.

The widget parameter specifies the existing Tk entry widget to perform

completion on.

The choices parameter is a Tcl list of one or more possible completions. For

this list, items containing reverse-solidus characters (\) must be enclosed in

braces (both the Tcl lappend and Tcl list commands do this automatically).

Return Value No return value is defined.

See Also “utlCompleteEntryMsg” on page 8-27 and “utlCompleteGui” on page 8-28.
8-26

Utility Reference
utlCompleteEntryMsg

Temporarily displays an informative message in the entry widget.

Synopsis utlCompleteEntryMsg panel widget message

Description utlCompleteEntryMsg temporarily displays an informative message in the

entry widget. This message is typically an error message describing why

completion could not be performed. The global variable utl_complete_mom_

msg_time specifies, in milliseconds, how long to display the message. If utl_

complete_mom_msg_time is not set the first time that either

utlCompleteGui, utlCompleteEntry, or utlCompleteEntryMsg are

called, utl_complete_mom_msg_time defaults to 375 milliseconds.

The panel parameter specifies the name to assign to the completion

window's top-level window.

The widget parameter specifies the existing Tk entry widget to perform

completion on.

The message parameter is a text string describing why completion was

denied.

Return Value No return value is defined.

See Also “utlCompleteEntry” on page 8-26 and “utlCompleteGui” on page 8-28.
8-27

Utility Reference
utlCompleteGui

Creates, configures, and displays the completion window.

Synopsis utlCompleteGui [-command script] [-title title] [-errScheme]

[-okCommand ok_script] [-variable var_name] [-wait] [-suffix]

panel choices

Description utlCompleteGui creates, configures, and displays the completion window.

Completion windows display a list of completion choices to end users.

In typical use, the completion window pops up to display a list of possible

selections, the end user then selects an item from this list and presses the OK

push button. This causes the selected item to be written to var_name, and for

script and ok_script to run. If nothing was selected when OK was pressed,

var_name is only updated with the first n characters of what is common to

all possible choices.

The -command script option causes script to execute whenever any

completion occurs. All occurrences of %value in script are replaced by the

final completion value selected in the Tk list widget just prior to the script’s

execution.

The -errScheme option causes the completion window to use the error color

scheme.

The -okCommand ok_script option causes ok_script to execute when the

OK push button is pressed. All occurrences of %value in ok_script are

replaced by the final completion value selected in the Tk list widget just prior

to the script’s execution.

The -title title option sets the title for the completion window to title.

The -variable var_name option arranges for the variable specified by

var_name to be set to the chosen selection.

The -wait option causes utlCompleteGui to only return once an item has

been selected.

The -suffix option prevents utlCompleteGui from completing partially

specified items. This option enables users to compose expressions and

sentences, then append an item chosen from a completion list to that

expression or sentence.
8-28

Utility Reference
The panel parameter specifies the name to assign to the completion

window’s top-level window.

The choices parameter is a Tcl list of one or more possible completions. For

this list, items containing reverse-solidus characters (\) must be enclosed in

braces (both the Tcl lappend and Tcl list commands do this automatically).

Return Value The return value is undefined if the -wait option is omitted, otherwise the

chosen selection is returned.

See Also “utlCompleteEntry” on page 8-26, “utlCompleteEntryMsg” on page 8-27, and

“utlPrepareWidget” on page 8-60.
8-29

Utility Reference
utlCurrentTime

Retrieves the current date and time for a specified time zone.

Synopsis utlCurrentTime [-zone zone] format

Description utlCurrentTime retrieves the current date and time for a specified time

zone.

The -zone zone option allows you to specify a time zone for the returned

date/time string. zone can be assigned two different types of values: a time

zone name, or a full time zone specification. For a time zone name, some

possible values supported on HP-UX systems are the following:

Value Description

MET (Middle European Time)

WET (Western European Time)

GMT (Greenwich Mean Time)

BST (British Summer Time)

NST (Newfoundland Standard Time)

NDT (Newfoundland Daylight Time)

AST (Atlantic Standard Time)

ADT (Atlantic Daylight Time)

EST (Eastern Standard Time)

EDT (Eastern Daylight Time)

CST (Central Standard Time)

CDT (Central Daylight Time)

MST (Mountain Standard Time)

MDT (Mountain Daylight Time)

PST (Pacific Standard Time)

PDT (Pacific Daylight Time)

YST (Yukon Standard Time)
8-30

Utility Reference
For a full time-zone specification, zone must have the following form:

[:]STDoffset[DST[offset][,rule]]

where

STD and DST are one or more bytes that designate the standard time zone

(STD) and summer, or daylight savings time zone (DST). STD is required.

If DST is not specified, summer time does not apply in this locale. Any

characters other than the numerals 0 through 9, the comma (,) character,

the minus (-) character, or the plus (+) character are allowed.

offset is the value that must be added to local time to arrive at

Coordinated Universal Time (UTC). offset has the following form:

hh[:mm[:ss]]

where

the hour (hh) is any value from 0 through 23. The optional minutes

(mm) and seconds (ss) fields are a value from 0 through 59. The hour

field is required.

If offset is preceded by a minus (-) character, the time zone is east of the

Prime Meridian. If offset is preceded by a plus (+) character, the time zone

is west of the Prime Meridian. The default case is west of the Prime

Meridian.

rule indicates when to change to and from daylight savings time. rule has

the following form:

date/time,date/time

where

the first date/time specifies when to change from standard to daylight

savings time, and the second date/time specifies when to change back.

These fields are expressed in current local time. The form of date

should be one of the following:

Dm.d Day of the month, where m is the month (1 through 12)

and d is the day of the month (1 through 31).

YDT (Yukon Daylight Time)

AST (Aleutian Standard Time)

ADT (Aleutian Daylight Time)

Value Description
8-31

Utility Reference
Jn Julian day (1 through 365). Does not count leap days

(February 29).

n The zero-based Julian day (0 through 365). Counts leap days

(February 29).

Mm.n.d The day of the week of the month, where m is the month

(1 through 12), n is the week of the month (1 through 5, with 1

being the week in which the first day of the month falls) and d is

the day of the week (0 through 6, with 0 being Sunday).

time has the same format as offset except that no leading sign ("-" or

"+") is allowed. The default, if time is not given, is 02:00:00.

If the -zone option is not specified, the local time zone is used.

format specifies the desired format for the returned date/time character

string. utlCurrentTime supports the same date/time formats as the utility

function utlFormatTime.

Return Value Returns a formatted date/time string.
8-32

Utility Reference
utlEncrypt,

utlDecrypt

Encrypts or decrypts character strings.

Synopsis utlEncrypt key value

utlDecrypt key value

Description utlEncrypt encrypts user-entered passwords that need to be stored in

configuration files. utlDecrypt decrypts user-entered passwords that were

encrypted by utlEncrypt.

utlEncrypt encrypts the character string value using the encryption key. The

key parameter is any arbitrary character string. The value parameter is the

user-entered password.

utlDecrypt decrypts the cipher code value using the encryption key. To

successfully decrypt value, the key parameter passed to utlDecrypt must

match the key parameter originally used to generate the cipher code. The

value parameter is the encrypted user-entered password.

Return Value utlEncrypt returns the encrypted cipher code as a Tcl list.

utlDecrypt returns the decrypted clear-text character string for success and

the passed-in cipher code for failure.
8-33

Utility Reference
utlEnvVarName

Allows access to environment variable names independent of specific

platforms.

Synopsis utlEnvVarName name

Description utlEnvVarName determines which string to use for references to the

environment variable specified by name. If the environment variable name

does not exist, utlEnvVarName searches for the first defined environment

variable whose name differs from the requested name in case only, then uses

that variable’s name. If no such environment variable is defined,

utlEnvVarName uses the requested name without modification.

utlEnvVarName is useful in Tcl scripts that must run on both UNIX and

Windows NT systems, where there are differences in case-sensitivity.

Return Value Returns the string that should be used to access the environment variable

specified by name.
8-34

Utility Reference
utlExitHan

Manages Tcl scripts that are called when the target system exits.

Synopsis utlExitHan [-delete id] id command

Description utlExitHan manages Tcl scripts that are called when the target system exits.

It can add new handler scripts, delete existing handler scripts, return existing

handler scripts, or execute all defined handler scripts.

If utlExitHan is called without any parameters, it executes all currently

defined handler scripts.

If the id parameter is supplied, it returns the handler script associated with

this id.

If the -delete option and the id parameter are supplied, it deletes the handler

script associated with this id.

If both the id and command parameters are supplied, it defines the Tcl script

command as a new handler script and replaces any that existed with the

same id.

Return Value Returns the handler script associated with this id if the id parameter is

supplied. Otherwise, no return value is defined.
8-35

Utility Reference
utlFileCopy

Copies contiguous blocks of bytes from one region of a file to another.

Synopsis utlFileCopy from_fd from_offset to_fd to_offset length

Description Copies the specified number of bytes from the offset specified in from_offset

in the source file’s open file descriptor to the offset specified in to_offset in

the destination file’s open file descriptor. This routine handles situations in

which to_fd and from_fd refer to the same file and the source and destination

regions overlap.

from_fd is the source file's open file descriptor.

from_offset is the offset in source file.

to_fd is the destination file's open file descriptor.

to_offset is the offset in destination file.

length is the number of bytes to copy.

Return Value No return value is defined.
8-36

Utility Reference
utlFilter

Filters list, removing any items not matching pattern.

Synopsis utlFilter list pattern

Description utlFilter filters list, removing any items not matching pattern.

The list parameter specifies the Tcl list to be filtered.

The pattern parameter specifies the pattern using pattern matching notation.

Return Value Returns the items in list matching pattern, as a Tcl list.
8-37

Utility Reference
utlFnameToStr

Converts a file name to a string.

Synopsis utlFnameToStr name

Description utlFnameToStr converts a file name to a string and restores characters that

were encoded by utlStrToFname.

Return Value Returns the resulting string.

See Also “utlStrToFname” on page 8-70.
8-38

Utility Reference
utlFocusTraversal

Arranges for the current input focus to traverse the supplied list of Tk

widgets.

Synopsis utlFocusTraversal [-noLoop] widget1 widget2 widget3 ...

Description utlFocusTraversal arranges for the current input focus to traverse the list

of Tk widgets whenever the end user types the carriage return key. This is

accomplished by binding a simple return-key handler to each widget. This

handler sets the focus to the next widget in the supplied list. All supplied

widgets should be Tk entry widgets.

By default the traversal is closed, meaning that the last widget in the supplied

list advances the focus back to the first widget.

If the -noLoop option is supplied, no return-key handler will be associated

with the last widget in the supplied list. Therefore, the focus will not advance

beyond this widget.

The widget1 widget2 widget3 ... parameters are the list of Tk widgets.

Return Value No return value is defined.

See Also “utlPrepareWidget” on page 8-60.
8-39

Utility Reference
utlFormatTime

Generates a formatted date and time string.

Synopsis utlFormatTime format year month day hour minute second usec

Description utlFormatTime generates a formatted date and time string.

The format parameter specifies the desired date and time format. It may

contain any of the following conversion specifiers:

Specifier Description

y year as a number (no leading zeros)

yy year as a two-digit number

yyyy year as a four-digit number

m month as a number (no leading zeros)

mm month as a two-digit number

mmm abbreviated name of the month

mmmm full name of the month

d day of the month as a number (no leading zeros)

dd day of the month as a two-digit number

ddd abbreviated name for the day of the week

dddd full name for the day of the week

H hour as a number (no leading zeros)

HH hour as a two-digit number

M minute as a number (no leading zeros)

MM minute as a two-digit number

S second as a number (no leading zeros)

SS second as a two-digit number

U microseconds as a number (no leading zeros if integral)

UU microseconds as a three-digit number

UUU microseconds as a six-digit number
8-40

Utility Reference
If the U, UU, or UUU conversion specifier is immediately preceded with

either a period (.) or comma (,) character, the formatted result is the

fractional number of seconds. Otherwise, the formatted result is the total

number of microseconds.

If neither the AM/PM or am/pm conversion specifiers are present, all H and

HH conversion specifiers use a 24-hour clock. Otherwise, they use a 12-hour

clock.

If any of the listed conversion characters (y, m, d, H, M, S, or U) are to appear

in format as literal characters, they must be quoted by preceding each of

them with a reverse-solidus (\) character .

year specifies the year to include in the formatted result. For this parameter,

0-69 maps to 2000-2069 and 70-99 maps to 1970-1999.

month specifies the month of the year and is an integer from 1 to 12 (January

to December).

day specifies the day of the month and is an integer from 1 to 31.

hour specifies the hour of the day and is an integer from 0 to 23.

minute specifies the minute of the hour and is an integer from 0 to 59.

second specifies the number of seconds into the current minute and is an

integer from 0 to 60 (including leap-seconds).

usec specifies the number of microseconds into the current second and is an

integer from 0 to 1000000.

The parameters year, month, day, hour, minute, second, and usec may each

contain a literal string. Literal strings include negative integers, floating point

numbers, and all nonnumeric values. Literal strings are inserted into the

returned value, as is, at the positions specified by format. This is useful for

wildcarding.

Return Value A formatted date and time string.

AM/PM 12-hour clock with an AM/PM indicator

am/pm 12-hour clock with an am/pm indicator

Specifier Description
8-41

Utility Reference
Example set s [utlFormatTime “yy-mm-dd HH:MM:SS” 96 03 20 7 47 22]

set s [utlFormatTime "yyyy/mm/dd HH:MM:SS.UUU" \
96 03 20 7 47 22 500000]

set s [utlFormatTime "yyyy/mm/dd HH:MM:SS.UUU" 96 03 20 7 47 22.5]

set s [utlFormatTime "dddd, mmmm dd, yyyy H:MM:SS AM/PM" \
96 03 20 7 47 22]

set s [utlFormatTime “\\year=yyyy \\month=mm \\da\\y=dd hour=HH \
\\minute=MM secon\\d=SS usec=UU” 96 03 20 7 47 22]

Caution The ability to pass values that are not positive integers for the parameters

year, month, day, hour, minute, second, and usec can obscure parameter

passing defects in your code.
8-42

Utility Reference
utlGetArg,

utlPeekArg,

utlArgEnd

Processes Tcl procedure parameters.

Synopsis utlGetArg keyword default value

utlPeekArg keyword default value

utlArgEnd

Description utlGetArg, utlPeekArg, and utlArgEnd process Tcl procedure parameters.

utlArgEnd checks the calling procedure's args variable for unprocessed

parameters and reports any errors found.

utlGetArg and utlPeekArg parse the calling procedure’s args variable

looking for a command-line parameter matching keyword. These routines

handle three forms of procedure parameters:

• Optional procedure parameters with one argument such as:

-color “white”

In this case, -color is defined to be the keyword and white is the optional

parameter’s argument.

• Optional procedure parameters with no arguments such as: -rewind

In this case, -rewind is the keyword and the optional parameter has no

argument.

• Required procedure parameters.

For procedure parameters with one argument:

If keyword is supplied and found in args, and default is supplied, then the

assumed value immediately following keyword is returned. Before

returning, utlGetArg removes both keyword and its associated value

from args. utlPeekArg never modifies the value of the calling

procedure’s args variable.

If keyword is not found in args, default is returned and args remains

unchanged.
8-43

Utility Reference
For procedure parameters with no argument (boolean return values):

If keyword is supplied and found in args, and default and value are not

supplied, then no value is assumed to follow keyword and the value 1 is

returned. Before returning, utlGetArg removes keyword from args.

utlPeekArg never modifies the value of the calling procedure's args

variable.

If keyword is not found in args, the value 0 is returned and args remains

unchanged.

For procedure parameters with no argument (custom return values):

If keyword is supplied and found in args, and default and value are

supplied, then no value is assumed to follow keyword and value is

returned. Before returning, utlGetArg removes keyword from args.

utlPeekArg never modifies the value of the calling procedure's args

variable.

If keyword is not found in args, default is returned and args remains

unchanged.

For required procedure parameters:

If keyword, default, and value are not supplied, then the assumption is

that a required parameter is present and the first item in args is returned.

Before returning, utlGetArg removes this item from args. utlPeekArg

never modifies the value of args, therefore is not very useful with

required procedure parameters.

The calling routine can demark the end of optional procedure parameters

and the beginning of required procedure parameters with the “--” flag. All

procedure parameters following this flag are treated as required parameters.

This allows the calling routine to pass in required parameters whose values

match any of the procedure’s optional parameters.

Return Value utlGetArg and utlPeekArg return either the value appropriate for the found

keyword or the default value if the keyword was not found.

No return value for utlArgEnd is defined.
8-44

Utility Reference
Example # Usage: foo [-decrement] [-file <name>] [-rewind] string char

proc foo args {
fetch optional parameters
set inc [utlGetArg "-decrement" "1" "-1"]
set fname [utlGetArg "-file" ""]
set rewind [utlGetArg "-rewind"]

fetch required parameters
set string [utlGetArg]
set char [utlGetArg]
utlArgEnd

your procedure body here...
for {set i 0} {... } {incr i $inc} {... }

if {$fname != ""} {set f [open $fname w]
} else {set f stderr}

if {$rewind} {... }
:
:
:

}

8-45

Utility Reference
utlGetArray

Extracts a value from a nested array.

Synopsis utlGetArray arrayName index1 ... indexN

Description utlGetArray extracts a value from a nested array. If Tcl supported the

syntax, the following two calls would be equivalent:

utlGetArray x $i $j
set x($i)($j)

Since Tcl doesn't support that syntax, this function uses the less-convenient

syntax that Tcl does support. The following two calls are equivalent:

[utlGetArray x $i]
$x($i)

The arrayName parameter is the name of the nested array.

The index1 ... indexN parameters indicate which element in the array to

extract.

Return Value Returns the value in the indicated element in arrayName. If no such element

exists, a Tcl error is raised.

See Also “utlPrintArray” on page 8-62, “utlSetArray” on page 8-63, and “utlUnsetArray”

on page 8-80
8-46

Utility Reference
utlHelpGui

Creates, configures, and displays the help window.

Synopsis utlHelpGui [-height h] [-width w] panel message file_name

Description utlHelpGui creates, configures, and displays the help window. The help

window contains two important areas:

• an output-only message area

• an input and output user-notes area

The output-only message area can display help text. The input and output

user-notes area allows end users to write their own notes for later viewing.

These notes are automatically stored in user-note files.

The -height h option sets the height of the message area to h rows.

The -width w option sets the width of the message area to w columns. The

default width depends upon the length of the help message: longer help

messages increase the width of the help window.

The panel parameter specifies the name to assign to the help window’s

top-level window.

The message parameter specifies the help message to display.

The file_name parameter specifies the name of the user-notes file. The global

variable utl_help_dir specifies the name of the directory that help files reside

in. If utl_help_dir is not set the first time that utlHelpGui is called, utl_help_

dir will default to the current working directory.

Caution If the directory containing the user-notes file could not be auto-created, is not

a directory, or does not provide write permissions, the user-notes portion of

the help window will be omitted.

Return Value No return value is defined.
8-47

Utility Reference
utlIsNull

Determines if variable is empty.

Synopsis utlIsNull variable

Description utlIsNull determines if variable is empty. The following variable values are

defined to be empty:

""
"{}"

Return Value Returns 1 if variable is empty and 0 if variable is not empty.
8-48

Utility Reference
utlIsPanel

Determines if panel is a valid Tk control panel.

Synopsis utlIsPanel panel

Description utlIsPanel determines if panel is a valid Tk control panel. A panel is only

considered to be valid if it exists and contains one or more control panel

widgets.

Return Value Returns 1 if panel is a valid Tk control panel, otherwise returns 0.
8-49

Utility Reference
utlJoinPathVar

Converts a Tcl list of paths into a single path value that can be assigned to the

path environment variable.

Synopsis utlJoinPathVar list

Description utlJoinPathVar joins component paths specified by the Tcl list list for use

as the value of a path environment variable. Separator characters are added

as appropriate.

utlJoinPathVar is useful in Tcl scripts that must run on both UNIX and

Windows NT systems.

Return Value Returns a character string consisting of paths that are appropriately joined.

See Also “utlSplitPathVar” on page 8-68
8-50

Utility Reference
utlList2Path

Converts a Tcl list to a path specification.

Synopsis utlList2Path [-separator sep] [-quote q] list

Description utlList2Path converts a Tcl list to a path specification. In the resulting path

specification, list elements are separated by a sep character. Each sep

character embedded in a path component is preceded by the quote character

q in the returned result.

The -separator sep option sets the separator character to sep. The default

separator character is a solidus (/).

The -quote q option sets the quote character to q. The default quote

character is a reverse solidus (\).

Return Value Returns the resulting path specification.

See Also “utlPath2List” on page 8-57.
8-51

Utility Reference
utlMkPanelPrologue,

utlMkPanelEpilogue,

utlMkPanelVisible

Constructs windows and makes an existing window visible.

Synopsis utlMkPanelPrologue [-title name] [-class class] name

utlMkPanelEpilogue [-dialog] [-assist] [-sameSize | -sameWidth |

-sameHeight] panel

utlMkPanelVisible [-state state] [-noRaise] [-noWiggle] [-sameWidth]

[-sameHeight] panel

Description utlMkPanelPrologue and utlMkPanelEpilogue construct windows.

utlMkPanelVisible makes an existing window visible to the end user.

utlMkPanelPrologue creates a top-level window if necessary, withdraws

this window so that the end user is not distracted by window construction

activity, assigns the window's title, class and icon, and sets up a

window-creation error handler. The window-creation error handler ensures

partially created windows are never left lying around. Calls to this utility

should eventually be followed by calls to utlMkPanelEpilogue.

The -title option sets the window’s title to name.

The -class option sets the window’s class to class.

utlMkPanelEpilogue destroys the window-creation error handler set up by

utlMkPanelPrologue, positions the window on the display, makes the

window resizable, maps the window, and wiggles it if configured to do so.

Calls to this utility should be preceded by calls to utlMkPanelPrologue.

The -dialog option changes the window to a dialog window that the end user

will have to deal with before dealing with any other.

The -assist option places the window beside the cursor rather than

according to the current window positioning policy. This is convenient, for

example, for completion windows.

The -sameSize, -sameWidth, or -sameHeight option sets the resulting

window to the same size, width, or height (respectively) as it had the last

time it was visible.
8-52

Utility Reference
utlMkPanelVisible maps the window if it is unmapped, deiconifies the

window if it is iconified, raises the window, and optionally wiggles the

window to attract the end user’s attention.

The -noRaise option disables the automatic raising of the window.

The -noWiggle option disables the window wiggle.

The -state option, where state is either iconic or normal, leaves the window

in the iconified or deiconified state, respectively.

Normally utlMkPanelVisible updates the window's minimum width and

height, but if either the -sameWidth or -sameHeight option is supplied, the

window's minimum width and height remains unchanged.

Return Value No return value is defined.

Example # Usage: myProcGui [-foo] panel
proc myProcGui args {

utlBusyCursor

fetch optional parameter
set f [utlGetArg "-foo" ""]

fetch required parameter
set p [utlGetArg]
utlArgEnd

if {[utlIsPanel $p]}{
< update panel widgets if/as necessary here >
utlMkPanelVisible $self
utlIdleCursor
return

}

prepare top-level window
utlMkPanelPrologue p -title [utlNls "My Title"] \

-class "myClassName"

create frame widgets
frame ${p}myFrame1_fr
frame ${p}myFrame2_fr

: :
utlPrepareWidget ${p}myFrame1_fr ${p}myFrame1_fr ...

create window widgets
< create and configure Tk widgets here >

pack widgets together
< pack Tk widgets here >

publish window
utlMkPanelEpilogue $self

utlIdleCursor

}

See Also “utlPrepareWidget” on page 8-60 and “utlFocusTraversal” on page 8-39.
8-53

Utility Reference
utlNls

Returns a localized string.

Synopsis utlNls key arg0 arg1 ...

Description utlNls returns a localized string for the key parameter. The global array

utl_msg_cat contains the localized messages. The key parameter is an index

into this array and is also the default message string. Therefore, if

utl_msg_cat($key) does not exist, key is the string returned.

utlNls supports the ability to insert substrings into the localized string. This

is done by passing extra arguments to utlNls, then referencing these

arguments in the localized string with %0, %1, and so forth. %0 is replaced by

the contents of arg0, %1 is replaced by the contents of arg1, and so forth.

Return Value The localized and formatted string.

The examples below assume that the message catalog file contains the

following four definitions:

Example set utl_msg_cat("Password") "Password"
set utl_msg_cat(my_long_message) "This is a long message "
set utl_msg_cat(file_not_found) "The file %0 was not found."
set utl_msg_cat("Copy %0 to %1?") "Create the clone %1 from %0?"

The following examples return various message strings and assign them to

Tcl variables.

Example # assign to “n” the default string
set n [utlNls “User Name”]

assign to “p” a localized short string
set p [utlNls “Password”]

assign to “l” a long string
set l [utlNls "my_long_message"]

assign to "f" a formatted long string
set file_name "my.file"
set f [utlNls file_not_found $file_name]

assign to “c” a formatted short string
set src “mysource.file”
set dest “mydest.file”
set c [utlNls “Copy %0 to %1?” $src $dest]
8-54

Utility Reference
utlOpen,

utlClose

Opens and closes files.

Synopsis utlOpen name mode

utlClose f

Description utlOpen opens files and utlClose closes files. These utilities are similar to

Tcl's open and close commands, but provide support for file versioning and

for safe file writes.

With file versioning, if the file foo is opened for write and a file named foo

already exists, the existing file foo is renamed foo,v2 and the newly opened

file is named foo. If a file named foo,v2 also exists, this file is renamed foo,v3

before the existing file foo is renamed foo,v2. In general, files named foo,v(n)

are renamed to foo,v(n+1) as long as n is less than utl_max_file_version. For

files whose version number is greater than or equal to utl_max_file_version,

the files are overwritten.

With safe writes, when the file foo is opened for write, the writes are actually

written to a file named foo.tmp. When the file is eventually closed, the

foo.tmp file is renamed foo. Safe writes ensure that if the file foo exists and

that it is 100% complete.

Return Value utlOpen returns an open file descriptor. No return value for utlClose is

defined.

If any of the conversion characters (y, m, d, H, M, S, or U) are to appear in

format as literal characters, they must be quoted by preceding each of them

with a reverse-solidus character (\).

The string parameter specifies the string to be parsed.

If the -wild option is supplied, any field in string may be a positive integer, a

negative integer, or the asterisk character (*). Otherwise, all fields in string

must be positive integers except, of course, for the character-oriented fields:

mmm, mmmm, ddd, dddd, AM/PM, and am/pm.
8-55

Utility Reference
Return Value Returns a list containing the fields (year month day hour minute second

usec). Unspecified fields are set to the empty list {}.

For the returned fields:

year == the year: 1970-2069 or *
month == the month: 1-12 or *

day == the day of the month: 1-31 or *
hour == the hour of the day: 0-23 or *

minute == the minute of the hour: 0-59 or *
second == the second of the minute: 0-60 or *

usec == the number of microseconds: 0-1000000 or *

See Also “utlFormatTime” on page 8-40.
8-56

Utility Reference
utlPath2List

Converts a path specification to a Tcl list.

Synopsis utlPath2List [-separator sep] [-quote q] path

Description utlPath2List converts a path specification to a Tcl list. In the path

specification, list elements are separated by a sep character, except for sep

characters preceded by the quote character q.

The -separator sep option sets the separator character to sep. The default

separator character is a solidus (/).

The -quote q option sets the quote character to q. The default quote

character is a reverse solidus (\).

Return Value Returns the resulting Tcl list specification.

See Also “utlList2Path” on page 8-51.
8-57

Utility Reference
utlPathVarSeparator

Returns the character used to separate the components of a path

environment variable.

Synopsis utlPathVarSeparator

Description utlPathVarSeparator fetches and uses the appropriate character when

separating the components of a path environment variable. On UNIX systems

this character is a colon (:), while on Windows NT systems this character is a

semi-colon (;).

utlPathVarSeparator is useful in Tcl scripts that must run on both UNIX

and Windows NT systems.

Return Value Returns the appropriate path separator character.
8-58

Utility Reference
utlPattern2RegExp

Converts a pattern into a regular expression.

Synopsis utlPattern2RegExp pattern

Description Converts the specified pattern into a regular expression.

Return Value The regular expression corresponding to the pattern.
8-59

Utility Reference
utlPrepareWidget

Prepares the specified widgets for display.

Synopsis utlPrepareWidget [-autoSelect list] [-errScheme] [-multiListBox]

[-noEntry] [-font name | dynamic | dynamic-bold | computer | static |

static-bold] widget1 widget2 widget3 ...

Description utlPrepareWidget prepares the specified widgets for display. All newly

created Tk widgets should be processed by this utility. Each widget only

needs to be processed once.

For entry and text widgets that are output only, use the -noEntry option to

ensure the widget's background color is appropriately set. The background

color for widgets that accept textual input is different from the usual

background color. This allows the end user to more easily identify data entry

areas.

The -font name option sets the font to name. name can either be the actual

name of a font or a class name such as dynamic, dynamic-bold, computer,

static, or static-bold. You should use nonproportional fonts for text entry

widgets (dynamic) and proportional fonts for output only text widgets

(static).

The -multiListBox option enables multiple selections in listbox widgets. By

default, listbox widgets only support single selections.

When a checkbutton or radiobutton widget controls whether or not an entry

widget is enabled, use the -autoSelect option when preparing the entry

widget. This option expects one argument: a list of all checkbutton and

radiobutton widgets that affect the state of the entry widget. This option

arranges for the listed checkbutton and radiobutton widgets to automatically

become enabled when the end user clicks a mouse button on the entry

widget.

utlPrepareWidget assigns widgets their colors. There are two color

schemes for windows:

• The normal color scheme.

• The error color scheme.
8-60

Utility Reference
By default utlPrepareWidget assigns widgets the normal color scheme, but

if the -errScheme option is supplied, the error color scheme is used.

utlPrepareWidget also sets the frame width of the specified widget.

Return Value No return value is defined.

See Also “utlFocusTraversal” on page 8-39 and “utlMkPanelPrologue,

utlMkPanelEpilogue, utlMkPanelVisible” on page 8-52.
8-61

Utility Reference
utlPrintArray

Prints array variables to an open file descriptor. The arrays may be normal

Tcl arrays or nested arrays.

Synopsis utlPrintArray fd arrayName pattern

Description Prints the contents of the array specified by arrayName to the open file

descriptor specified by fd. If the optional pattern parameter is supplied, only

array indices matching this pattern are printed. pattern must be expressed

using pattern matching notation.

Return Value No return value is defined.

See Also “utlGetArray” on page 8-46, “utlSetArray” on page 8-63, and “utlUnsetArray”

on page 8-80.
8-62

Utility Reference
utlSetArray

Sets a value in a nested array.

Synopsis utlSetArray arrayName index1 ... indexN value

Description utlSetArray sets a value in a nested array. If Tcl supported the syntax, the

following two calls would be equivalent:

utlSetArray x $i $j 3
set x($i)($j) 3

Since Tcl doesn't support that syntax, this function uses the less-convenient

syntax Tcl does support. The following two calls are equivalent:

utlSetArray x $i 3
set x($i) 3

The arrayName parameter is the name of the nested array.

The index1 ... indexN parameters are the indicated element in the array.

The value parameter is the value assigned to the indicated element in the

array.

Return Value Always returns value.

See Also “utlGetArray” on page 8-46, “utlPrintArray” on page 8-62, and “utlUnsetArray”

on page 8-80
8-63

Utility Reference
utlSharedLibSuffix

Returns the shared-library suffix used on the host platform.

Synopsis utlSharedLibSuffix

Description utlSharedLibSuffix determines the suffix used by shared-library file names

on the host platform.

Return Value Returns the suffix for shared-library files.
8-64

Utility Reference
utlSharedLibVarName

Returns the name of the environment variable used for shared library search

paths on the host platform.

Synopsis utlSharedLibVarName

Description utlSharedLibVarName determines the name of the shared-library search

path environment variable for the host platform.

Return Value Returns an environment variable name.
8-65

Utility Reference
utlShiftTimeZone

Converts a date/time string from one time zone to another.

Synopsis utlShiftTimeZone [-from zone] [-to zone] format string

Description utlShiftTimeZone converts a date/time string from one time zone to

another.

The -from zone and -to zone options allows you to specify a time zone for the

returned date/time string. zone can be assigned two different types of values:

a time zone name, or a full time zone specification. For a time zone name, see

“utlCurrentTime” on page 8-30 for some possible values supported on

HP-UX systems.

For a full time-zone specification, zone must have the following form:

[:]STDoffset[DST[offset][,rule]]

where

STD and DST are one or more bytes that designate the standard time zone

(STD) and summer, or daylight savings time zone (DST). STD is required.

If DST is not specified, summer time does not apply in this locale. Any

characters other than the numerals 0 through 9, the comma (,) character,

the minus (-) character, or the plus (+) character are allowed.

offset is the value that must be added to local time to arrive at

Coordinated Universal Time (UTC). offset has the following form:

hh[:mm[:ss]]

where

the hour (hh) is any value from 0 through 23. The optional minutes

(mm) and seconds (ss) fields are a value from 0 through 59. The hour

field is required.

If offset is preceded by a minus (-) character, the time zone is east of the

Prime Meridian. If offset is preceded by a plus (+) character, the time zone

is west of the Prime Meridian. The default case is west of the Prime

Meridian.

rule indicates when to change to and from daylight savings time. rule has

the following form:

date/time,date/time
8-66

Utility Reference
where

the first date/time specifies when to change from standard to daylight

savings time, and the second date/time specifies when to change back.

These fields are expressed in current local time. The form of date

should be one of the following:

Dm.d Day of the month, where m is the month (1 through 12)

and d is the day of the month (1 through 31).

Jn Julian day (1 through 365). Does not count leap days

(February 29).

n The zero-based Julian day (0 through 365). Counts leap days

(February 29).

Mm.n.d The day of the week of the month, where m is the month

(1 through 12), n is the week of the month (1 through 5, with 1

being the week in which the first day of the month falls) and d is

the day of the week (0 through 6, with 0 being Sunday).

time has the same format as offset except that no leading sign ("-" or

"+") is allowed. The default, if time is not given, is 02:00:00.

If the -from option is not specified, string is assumed to be in the local time

zone. If the -to option is not specified, the returned date/time string will be

expressed in local time.

format specifies the required format for the returned date/time character

string. utlCurrentTime supports the same date/time formats as the utility

function utlFormatTime.

string specifies which date/time string to convert.

Return Value Returns a formatted date/time string in the same format as string.
8-67

Utility Reference
utlSplitPathVar

Converts the value of a path environment variable into a Tcl list of paths.

Synopsis utlSplitPathVar string

Description utlSplitPathVar splits the path variable specified by string into its

component paths.

utlSplitPathVar is useful in Tcl scripts that must run on both UNIX and

Windows NT systems.

Return Value Returns the component paths as a Tcl list.
8-68

Utility Reference
utlStrAlign

Pads the supplied strings with space characters.

Synopsis utlStrAlign [-left] string1 string2 ...

Description utlStrAlign pads the supplied strings with space characters so that they all

have the same number of characters (in other words, are the same length).

The default is to align the right edge by appending space characters to each

string.

If the -left option is supplied, the strings will be aligned against the left edge

by appending space characters to each string.

Return Value Returns a Tcl list of aligned strings.

Example set sa [utlStrAlign -left "Name:" "Password:"]
set aligned_name [lindex $sa 0]
set aligned_passwd [lindex $sa 1]
8-69

Utility Reference
utlStrToFname

Converts a string to a file name.

Synopsis utlStrToFname string

Description utlStrToFname converts a string to a file name. This utility encodes

characters that are not allowed or are awkward in file names, such as white

space, solidus, and brace characters.

Return Value Returns the resulting file name.

See Also “utlFnameToStr” on page 8-38.
8-70

Utility Reference
utlTableHeader,

utlTableRow,

utlTablePut

Composes and prints tabular data.

Synopsis utlTableHeader [-title title] f heading1 heading2 ...

utlTableRow f column1 column2 ...

utlTablePut [-indent n] [-justify left | right | center] [-widths w] f

Description utlTableHeader, utlTableRow, and utlTablePut compose and print

tabular data. Tables are first composed and then printed. You may

simultaneously construct more than one table at a time, but you may only

construct one table at a time for each file descriptor.

utlTableHeader initiates table construction, and optionally assign the table

a title and column headings. Tables may have one or more columns. If no

headings are specified, the table will have one column (the minimum).

utlTableRow adds one row of data to the table associated with the open file

descriptor f. If no columnN parameters are supplied, a blank separator row is

added to the table. Calls to utlTableRow must be preceded by a call to

utlTableHeader.

utlTablePut writes the previously composed table that is associated with

the open file descriptor f to the file/stream associated with f. Calls to

utlTablePut must be preceded by a call to utlTableHeader, and zero or

more calls to utlTableRow.

The utlTablePut option -indent n indents the generated table by n columns.

The default indentation is 0 columns.

The utlTablePut option -justify j allows you to specify how to justify the

text in each column. j is a Tcl list with one item for each column in the table.

The value for each item may be left, right, or center. The default justification

for all columns is left.

The utlTablePut option -widths w allows you to specify the width of each

column in characters. w is a Tcl list with one item (a positive integer) for

each column in the table. The default column width is the number of columns

required by the widest item appearing in the column.
8-71

Utility Reference
Return Value No return value is defined.

Example set f [open “myfile.out” w]

utlTableHeader $f -title “My Table" "Column 1” “Column 2”

utlTableRow $f “Product” “my product”
utlTableRow $f “Vendor” “Hewlett-Packard”
utlTableRow $f
utlTableRow $f “Version” “my version”
utlTableRow $f “Version Date” “my date”

utlTablePut $f -indent 2 -justify {right left}

close $f
8-72

Utility Reference
utlTimerNextTimeout

Calculates the next timeout date.

Synopsis utlTimerNextTimeout [-zone zone] [-from time] timeoutSpec

Description The utlTimerNextTimeout utility calculates the date and time of the next

timeout for timeoutSpec.

The -zone zone option allows you to specify a time zone for the returned

date/time string. zone can be assigned two different types of values: a time

zone name, or a full time zone specification. For some possible time zone

name values, see “utlShiftTimeZone” on page 8-66.

The -from time option allows you to establish the base time as either the

number of seconds since the epoch, or a date and time string in the form of a

six- or seven-item Tcl list:

{year month day hour minute second}

{year month day hour minute second usecs}

The timeoutSpec parameter is the timeout specification as either the number

of seconds until the next timeout event, the letter Q followed by the number

of seconds until the next timeout event, or a date and time in the form of a

six- or seven-item Tcl list:

{year month day hour minute second}

{year month day hour minute second usecs}

where

year is the year, typically any value between 1970 and 2032.

month is the month, typically any value between 1 and 12.

day is the day of the month, typically any value between 1 and 31.

hour is the hour, typically any value between 0 and 23.

minute is the minute, typically any value between 0 and 59.

second is the second, typically any value between 0 and 59.

usec is microseconds, typically any value between 0 and 999999.
8-73

Utility Reference
Alternatively, each of the above items can have the following form:

In addition, the year field can be set to the following strings:

In addition, the month field can be set to the following strings:

In addition, the day field can be set to the following strings:

Format Description

empty A wild card, accept any valid value.

num Use the supplied num.

+num Use the sum of the current time and num.

-num Use the next larger current time component divisible by the supplied num.

String Description

leap-year Make the year a leap year.

non-leap-year Make the year a non-leap year.

String Description

Easter-Sunday Use the month in which Easter Sunday falls.

Easter-Monday Use the month in which Easter Monday falls.

Good-Friday Use the month in which Good Friday falls.

Boxing-Day Use the month in which Boxing Day falls.

String Description

Easter-Sunday Use the day on which Easter Sunday falls.

Easter-Monday Use the day on which Easter Monday falls.

Good-Friday Use the day on which Good Friday falls.

Boxing-Day Use the day on which Boxing Day falls.

Statutory-Holiday Use days that fall on a statutory holiday.

non-Statutory-Holiday Use days that do not fall on a statutory holiday

Holiday Use days that fall on statutory holidays and on weekends.
8-74

Utility Reference
Return Value Returns the date and time of the next timeout as a seven-item Tcl list:

{year month day hour minute second usecs}

See Also “utlTimerQuery” on page 8-76, “utlTimerStart” on page 8-77, and

“utlTimerStop” on page 8-79

non-Holiday Use days that fall on business days.

weekend Use days that fall on a weekend.

weekday Use days that don't fall on a weekend.

last Use the last day of the month.

week—day_name

Use a specified day of week where
week is the 1st, 2nd, 3rd, 4th, 5th, or last.
day_name is Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, or
Saturday.

day_name <= day Indicates use the day of the week on or before day.

day_name >= day Indicates use the day of the week on or after day.

day_name—closest—day Indicates use the day of the week closest to day.

String Description
8-75

utlTimerQuery

Retrieves timer information.

Synopsis utlTimerQuery [-id id] [what1 [what2 [what3 [...]]]]

Description utlTimerQuery retrieves timer information.

The -id option queries the timer specified by id, which is the value returned

by utlTimerStart.

whatX specifies the object of the query. Some possible values for what are as

follows:

command timeout command or commands

isRunning is a specific timer or any timer running?

tclID Tcl timer ID or IDs

timers IDs for running timer or timers

Return Value Returns the results of the query.

See Also “utlTimerNextTimeout” on page 8-73, “utlTimerStart” on page 8-77, and

“utlTimerStop” on page 8-79

Utility Reference
utlTimerStart

Starts a one-shot or periodic timer.

Synopsis utlTimerStart [-zone zone] [-repeat time] [-id id] start_time command

Description The -zone option sets the time zone for the passed-in dates and times, as

specified by zone. See “utlCurrentTime” on page 8-30 for possible values.

The -repeat option sets the repeat criteria of a periodic timer. time specifies

either the number of seconds between timeout events, the letter Q followed

by the number of seconds between timeout events, or a date and time in the

form of a six- or seven-item Tcl list (see the start_time parameter below). If

the -repeat option is not supplied, a one-shot timer starts.

The -id option passes the timer ID specified by id to the timer. id must not

match the ID of a timer that is already running.

The start_time parameter indicates when to start the timer. This can be

specified as either an empty list—which tells the timer to start immediately—

the number of seconds since the epoch, or the date and time in the form of a

six- or seven-item Tcl list:

{year month day hour minute second}

{year month day hour minute second usecs}

where

year is the year, typically any value between 1970 and 2032.

month is the month, typically any value between 1 and 12.

day is the day of the month, typically any value between 1 and 31.

hour is the hour, typically any value between 0 and 23.

minute is the minute, typically any value between 0 and 59.

second is the second, typically any value between 0 and 59.

usec is microseconds, typically any value between 0 and 999999.

See “utlTimerNextTimeout” on page 8-73 for alternative values for year,

month, day, hour, minute, second and usecs.
8-77

Utility Reference
The command parameter indicates which Tcl command to execute upon

timeout. The following character strings are replaced with the appropriate

values before $command is executed:

• %time” Replaced with the current time in seconds as floating-point

number.

• %datetime” Replaced with The current date and time as a Tcl list:

{year month day hour minute second usecs}

• %id” Replaced with the timer’s timer ID.

• %delay” Replaced with the time in seconds until the next timeout as a

floating-point number.

• %zone” Replaced with the time zone name.

Return Value Returns a timer ID.

See Also “utlTimerNextTimeout” on page 8-73, “utlTimerQuery” on page 8-76, and

“utlTimerStop” on page 8-79
8-78

Utility Reference
utlTimerStop

Stops the specified timer.

Synopsis utlTimerStop id

Description Stops the timer specified by the parameter id.

Note Stopping a timer that is no longer running will not produce an error.

Return Value No return value is defined.

See Also “utlTimerNextTimeout” on page 8-73, “utlTimerQuery” on page 8-76, and

“utlTimerStart” on page 8-77
8-79

Utility Reference
utlUnsetArray

Deletes array variables, including nested arrays.

Synopsis utlUnsetArray arrayName

Description utlUnsetArray does the same thing as the Tcl command unset arrayName,

but works around memory leaks in [incr Tcl] version 1.5.

Return Value No return value is defined.

See Also “utlGetArray” on page 8-46, “utlPrintArray” on page 8-62, and “utlSetArray”

on page 8-63.
8-80

Utility Reference
utlWidgetState

Enables and disables Tk widgets.

Synopsis utlWidgetState [-normal] [-disabled] [-errScheme] widget1 ... widget

Description utlWidgetState enables or disables the widgets specified by widgetN. The

-normal flag enables the widgets, while the -disabled flag disables the

widgets. If the -errScheme flag is supplied, the error color scheme is used

rather than the normal color scheme.

The utlWidgetState is not needed for Tk widgets that support the -state

configuration option—only for those widgets that don’t support this option

(such as scrollbar and label widgets).

For those Tk widgets supporting the -state configuration option,

utlWidgetState changes the widget’s state using the Tk configure

command. For all other widgets, utlWidgetState modifies the color of the

widget to make it appear disabled or enabled. For example, the text of the Tk

label widget appears grayed-out when the widget is disabled, and normal

when the widget is enabled.

Return Value No return value is defined.
8-81

Utility Reference
utlWidgetText

Returns the user-visible text that identifies the specified widget.

Synopsis utlWidgetText widget

Description utlWidgetText returns user-visible text that identifies (to the end user) the

specified widget on a window. Any leading or trailing white space is deleted

from the result before it is returned.

Return Value Returns the user-visible text associated with widget.

Caution Some widgets, such as frames, don't contain any identifying text.

See Also “utlChkAlpha” on page 8-20, “utlChkInt” on page 8-23, and “utlChkName” on

page 8-24.
8-82

Utility Reference
yourIntfCompletionList

Composes a list of completions.

Synopsis yourIntfCompletionList name

Description yourIntfCompletionList composes a list of completions for the type of

target system specified by the prefix name yourIntf. This utility traverses the

target system’s name-space hierarchy to compose the list.

The name parameter specifies the initial path name, as a Tcl list, upon which

to base the returned completions.

Return Value Returns the possible completions as a Tcl list.
8-83

Utility Reference
8-84

Index
A

abortNameSpaceLoad method
developing 4-20
yourIntfClass 7-37

access configuration 1-17
loading 5-9
printing 5-13
reloading 5-21
saving 5-11
variables 5-19

Access window
configuring 5-15
creating 5-8, 5-15
developing 5-2
displaying 5-15
layout 5-15
reloading 5-21

Add Mapping window 6-13
address 1-4, 1-24
array variables

deleting 8-80
printing 8-62

asynchronous
operations 1-20
systems 6-6

B

base class
elCommClass 7-5
elSpoolerClass 7-34

Bourne shell, running from 2-7
build script

compiling and linking 2-6 through 2-8
executing 2-4

building a customized Tcl interpreter
2-5 through 2-9

byteCount method 7-22

C

C code 1-13, 1-18, 1-20
C shell, running from 2-7
CCOPTS 2-7
cipher code 8-33
color schemes 8-60
command-line option

collisions 1-14
consuming 3-19, 4-15
keywords 3-18, 4-14, 7-11, 7-41
parsing 3-19, 4-15
process 7-19
removing 7-7

commit method 1-16, 1-26
developing 3-31
elCommClass 7-6
elFIFOSpoolerClass 7-22

communication class 1-2
elCommClass 7-5
elFIFOSpoolerClass 7-21
elLinkClass 7-25
elRASpoolerClass 7-30
elSpoolerClass 7-34
yourIntfClass 7-36

communication object
design concepts 1-21
developing Configuration Tool 4-2
developing Data Server 3-2
information exchange 1-17
integrating 3-8, 4-5
methods 3-4
NULL 1-8
overview 1-8, 1-13
target system interface 1-19

communication objects
database-oriented 3-26, 7-12

compiling build script 2-6
completion

compose list 8-83
message 8-27
Trigger panel 6-20

completion window
creating 8-28
error message 8-26
name assignment 8-27

concepts 1-1
configDir method 7-25
configuration

access 1-17, 5-2
access variables 5-19
configured objects 1-5
directory 7-40
discarding values 1-23
Index-1

Index
trigger 1-4, 1-17, 6-11
trigger variables 6-22

configuration file
directory 1-6
information exchange 1-17
interaction 5-5
loading 1-14, 3-21, 7-10
name 7-28
passwords stored in 8-33
reading 5-9
returning path 7-25
revision variable 5-8, 8-21
saving 5-19, 6-22
spooler 7-21, 7-30, 7-34
writing 5-11

configuration repository
access data 5-8
access variables 5-19
data flow 5-3, 6-3
loading access configuration 5-9
overview 1-3
saving access configuration 5-11

Configuration Tool 1-2
communication object 4-2
interface 1-17
interface class 7-36
overview 1-8

Configuration Tool core
command-line options 4-15
global variables 5-9, 5-11
interaction 4-7, 5-5, 6-5
keywords used by 4-14

configure
Access window 5-15
completion window 8-28
help window 8-47
Trigger panel 6-14

configured method
creating 1-9
definition 1-4

constructor method 1-14
developing 3-14
elCommClass 7-6
elFIFOSpoolerClass 7-22
elRASpoolerClass 7-31
elSpoolerClass 7-34

consume command-line options 3-19
consumeOptions method 1-14

developing 3-19, 4-15
elCommClass 7-7

yourIntfClass 7-37
converting

file name 8-38
message names 3-14
new-line characters 3-20, 4-16
path 3-17, 4-13, 7-11, 7-41, 8-57
string 8-70
Tcl list 3-16, 7-9, 7-38, 8-51

creating
Access window 5-15
completion window 8-28
configuration objects 1-5, 1-9
configured method 1-9
directories 1-6
global variables 5-8
message catalog files 4-26
Trigger panel 6-14

curMethod method 7-25
cursor

hourglass sprite 8-17
spool file 7-21

customized Tcl interpreter, building.

See building a customized Tcl
interpreter

customizing Tcl interpreters 2-4
cygwin.dll 2-3

D

data flow
Access window 5-3
Data Server 1-13
Trigger panel 6-3

Data Server 1-2, 1-3
base class 7-5
communication object 3-2
overview 1-13
version 7-29

data variables 5-3, 6-3
database-oriented

communication objects 3-26, 7-12
systems 1-19, 1-25, 6-6

decrypting cipher code 8-33
default

alignment 8-69
characters 8-51, 8-57
methods 3-2, 7-5
option keywords 3-18, 4-14

destination address 1-4
destructor method 1-16

developing 3-15
Index-2

Index
elCommClass 7-8
developer’s fileset 2-2
directories, creating 1-6
discardInput variable 1-23

elCommClass 7-8
open method 3-21, 7-10
setTrigger method 3-23, 7-15, 7-18

discardOutput variable 1-23
elCommClass 7-8
open method 3-21, 7-10

dp_RPC connection 8-6
dynamic name space flag 7-38, 7-43

E

Edit Mapping window 1-11
name space data 4-18
trigger focus 6-13, 7-43

Edit Method window 1-10, 7-43
el_app_cfg_subdir 5-9, 5-11
el_app_msg_cat_dir 4-26
el_app_obj_name 5-9, 5-11, 5-21
elCommClass 1-13, 3-2, 7-5

base class 7-5
commit method 7-6
communication class 7-5
constructor method 7-6
consumeOptions method 7-7
destructor method 7-8
discardInput variable 7-8
discardOutput variable 7-8
getChildren method 7-9
list2path method 7-9
open method 7-10
options method 7-11
path2list method 7-11
read method 7-12
rollback method 7-14
run method 7-15
selectionProcedures method 7-16
setTrigger method 7-17
supports method 7-18
usage method 7-18
write method 7-19

elconfig 1-2
elFIFOSpoolerClass 1-24, 7-21

commit method 7-22
communication class 7-21
constructor method 7-22
print method 7-23
read method 7-23

write method 7-24
elFindServer utility 8-6
ELINK-TCLDEVEL 2-2
elLeaveObjectHan utility 8-7
elLinkClass 1-13, 7-25

communication class 7-25
log method 7-26

elLinkTriggerTimeout utility 8-8
elNSpaceGUI utility 8-9
elRASpoolerClass 1-24, 7-30

communication class 7-30
constructor method 7-31
print method 7-32
read method 7-32
write method 7-33

elRFC.obj 2-3, 2-9
elserver 1-2, 3-8
elsh.c 2-5
elSpoolerClass 1-24, 7-34

base class 7-34
communication class 7-34
constructor method 7-34

encrypting passwords 8-33
Enterprise Link

functions 2-8
licensing functions 2-8

environment variables 1-14, 3-8
error 6-22

color scheme 8-26, 8-28, 8-60
handler 8-17, 8-52
handling regimen 7-28
intercepting 6-22
log 1-13, 7-27, 7-35
reporting 5-19
usage 3-20, 4-16, 7-7

error message
list2path 7-9
loadNameSpace method 7-40
log method 7-26
open method 7-10
read method 7-14
utlChkAlpha utility 8-20
utlChkInt utility 8-23
utlChkName method 8-24
utlCompleteEntryMsg utility 8-27
write method 7-20

errorHandling method 7-35
example, linking 2-9
execute method 1-15, 7-26
executing build script 2-4
Index-3

Index
F

FIFO spooler 1-24, 7-21
file name, converting 8-38, 8-70
file versioning 8-55
focus

traversal 5-16, 8-39
trigger 6-13, 7-43

frame width 8-61

G

getArray utility 7-13
getChildren method

developing 3-25, 4-21
elCommClass 7-9
yourIntfClass 7-9, 7-38

getSpoolPaths 3-33
global variable

$var_name 7-37
el_app_cfg_subdir 5-9, 5-11
el_app_msg_cat_dir 4-26
el_app_obj_name 5-9, 5-11, 5-21
initialize 1-14
utl_complete_mom_msg_time 8-27
utl_help_dir 8-47
yourIntf_access_cfg_file_name 5-9,

5-11
yourIntf_trig_variables 6-10

GNU programs
patch 2-3
sed 2-3
tar 2-3

H

handler script 8-7, 8-35
help window 8-47
hierarchical logical name space 1-24
host computer name 4-2, 5-6
hourglass sprite 8-17
HP-UX, environment variable 2-6

I

include files, to build a Tcl interpreter
2-6

incr Tcl. See Tcl

INIT_LIC 2-6
INIT_SAP 2-6
instance variables 3-14, 7-5
integrate communication object 3-8,

4-5

interaction
Access window 5-5
interface object 4-7
Trigger panel 6-5

interface
class 7-36
Configuration Tool 1-17
Data Server 1-17
object 4-6
Tcl/C 1-18

internationalization 4-26
interpreter

building 2-4
functions 2-8

interpreter, building a customized Tcl
2-5 through 2-9

interpreter, extending 1-2
isEnabled method 7-35

K

Korn shell, running from 2-7

L

layout
access configuration file 5-11
Access window 5-7, 5-15
configuration file 1-6
source file 4-4
Trigger panel 6-8, 6-14

librfc32.dll 2-9
libtcl.dll 2-9
list2path error message 7-9
list2path method

developing 3-16, 4-12
elCommClass 7-9
yourIntfClass 7-38

loadNameSpace method
developing 4-18
yourIntfClass 7-39

localization 4-26
log method

elLinkClass 7-26
overview 1-21

logical name space. See name space

M

main window 1-9
match method 7-31
maxByteCount method 7-35
Index-4

Index
message catalog files 4-26
message-oriented

read method 3-26, 7-12
systems 1-19, 6-6
write method 3-29, 7-20

method
abortNameSpaceLoad 4-20, 7-37
byteCount 7-22
commit 1-16, 1-26
configDir 7-25
configured 1-4, 1-9
constructor 1-14
consumeOptions 1-14
curMethod 7-25
definition 1-4
destructor 1-16
elCommClass 7-5
elFIFOSpoolerClass 7-21
elLinkClass 7-25
elRASpoolerClass 7-30
elSpoolerClass 7-34
errorHandling 7-35
execute 1-15, 7-26
getChildren 3-25, 4-21
isEnabled 7-35
list2path 3-16, 4-12
loadNameSpace 4-18
log 1-21
match 7-31
maxByteCount 7-35
methodInfo 7-28
msgCount 7-23
open 1-14
options 1-14
path2list 3-17, 4-13
print 7-23, 7-32
read 1-15
remove 7-32
rollback 1-16
run 1-15
selectionProcedures 3-10, 4-22
setTrigger 1-14
supports 3-9, 4-10
usage 1-14
write 1-15, 1-25
writeNameSpace 7-45
yourIntfClass 7-36

method selector diagram 1-9
methodInfo method, developing 7-28
methods

communication object 3-4
mouse cursor 8-17
msgCount method 7-23

N

name space
dynamic 4-11, 7-38, 7-44
loading 4-11, 4-18, 7-39, 7-44
overview 1-24
saving 7-45

naming scheme 1-24
native language 4-26
nested array 7-13, 8-46, 8-63
NULL communication object 1-8

O

object file, elRFC.obj 2-3
Object getSpoolPaths Procedure 3-33
open method 1-14

developing 3-21, 4-17
elCommClass 7-10
yourIntfClass 7-40

options method 1-14
developing 3-18, 4-14
elCommClass 7-11
yourIntfClass 7-41

P

pack command 5-15, 6-17
password 5-6, 8-33
patch 2-3
path, converting 8-51, 8-57
path2list method

developing 3-17, 4-13
elCommClass 7-11
yourIntfClass 7-41

port number 8-6
print

access configuration 5-13
status messages 4-17, 7-40
tabular data 8-71
trigger configuration 6-11
usage message 3-20, 4-16, 7-44

print method
elFIFOSpoolerClass 7-23
elRASpoolerClass 7-32

product, licensing libraries 2-8
program development, customizing

Tcl interpreters 2-4
Index-5

Index
R

random-access spooler 1-24, 7-30
read method 1-15

developing 3-26
elCommClass 7-12
elFIFOSpoolerClass 7-23
elRASpoolerClass 7-32

reload Access window 5-21
remove method 7-32
rename keywords 3-18, 4-14
reporting error 5-19
return values 7-3
revision variable 5-8, 8-21
RFC functions 2-8
rollback method 1-16

developing 3-32
elCommClass 7-14

run method 1-15
developing 3-23
elCommClass 7-15

S

SAP Communication Object
RFC functions 2-8
RFC libraries 2-8

SAP R/3 RFC libraries 2-9
sed 2-3
selectionProcedures method

developing 3-10, 4-22
elCommClass 7-16
yourIntfClass 7-42

service name 8-6
setArray utility 7-13
setTrigger method 1-14

developing 3-23
elCommClass 7-17

source address 1-4
spooler

base class 7-34
first-in-first-out 7-21
overview 1-24
random access 7-30

spooling data 1-24
string, converting 8-38, 8-70
supports method

developing 3-9, 4-10
elCommClass 7-18
yourIntfClass 7-43

symbolic constants 2-6

system DLLs 2-9

T

table, composing 8-71
tar 2-3
target system 1-13
Tcl

bindings in elRFC.obj 2-3
commands, incorporating new 2-5
concepts 1-21
converting list 8-51, 8-57
interface 1-18
interpreter 1-2, 2-6
interpreter, building a customized 2-5

through 2-9
interpreter, customizing 2-4
libraries 2-7
libraries, incorporating new 2-5
managing scripts 8-7, 8-35
scripts 2-5
version 1-21

tracing 1-21
transforming, value 1-11
traversal focus 5-16, 8-39
trigger

configuration 1-17
configuration variables 6-22
criteria 1-4
focus 6-13, 7-43
printing configuration 6-11

Trigger Configuration window 1-12
Trigger panel

completions 6-20
create variables 6-10
creating 6-14
data flow 6-3
developing 6-2
initially displayed 6-19
interaction 6-5
layout example 6-8
packing widgets 6-17
synchronizing widgets 6-24

U

unset arrayName 8-80
usage error 3-19, 4-15, 4-16
usage method 1-14

developing 3-20, 4-16
elCommClass 7-18
yourIntfClass 7-44
Index-6

Index
user
entered information 1-17
interface 1-2
login name 5-6
notes area 8-47

utl_complete_mom_msg_time 8-27
utl_help_dir 8-47
utl_msg_cat array 4-26
utlAbsPath 8-16
utlArgEnd 7-7, 8-43
utlBusyCursor 8-17
utlCanonicalizeList 8-19
utlChkAlpha 5-19, 6-22, 8-20
utlChkCfgFileRev 5-9, 8-21
utlChkInt 5-19, 6-22, 8-23
utlChkName 8-24
utlClicksPerMilliSecond 8-25
utlClose 5-11, 8-55
utlCompleteEntry 6-20, 8-26
utlCompleteEntryMsg 6-20, 8-27
utlCompleteGui 8-26, 8-28
utlCurrentTime 8-30
utlDecrypt 8-33
utlEncrypt 8-33
utlEnvVarName 8-34
utlExitHan 8-35
utlFileCopy 8-36
utlFilter 8-37
utlFnameToStr 1-6, 8-38
utlFocusTraversal 5-16, 8-39
utlFormatTime 8-40
utlGetArg 4-15, 7-7, 8-43
utlGetArray utility 8-46
utlHelpGui 8-47
utlIdleCursor 8-17
utlIsNull 8-48
utlJoinPathVar 8-50
utlList2Path 8-51
utlMkPanelEpilogue 5-16, 8-52
utlMkPanelPrologue 5-16, 8-52
utlMkPanelVisible 5-15, 8-52
utlNls 4-26, 8-54
utlOpen 5-11, 8-55
utlPath2List 8-57
utlPathVarSeparator 8-58
utlPeekArg 4-15, 7-7, 8-43
utlPrepareWidget 5-16, 6-15, 8-60
utlPrintArray 8-62

utlSetArray utility 8-63
utlSharedLibSuffix 8-64
utlSharedLibVarName 8-65
utlShiftTimeZone 8-66
utlSplitPathVar 8-68
utlStrAlign 8-69
utlStrToFname 1-6, 8-38, 8-70
utlTableHeader 5-13, 8-71
utlTablePut 5-13, 8-71
utlTableRow 5-13, 6-11, 8-71
utlTimerNextTimeOut 8-73
utlTimerQuery 8-76
utlTimerStart 8-77
utlTimerStop 8-79
utlUnsetArray 8-80
utlWidgetState 8-81
utlWidgetText 8-82

V

variable
el_app_cfg_subdir 5-9, 5-11
el_app_msg_cat_dir 4-26
el_app_obj_na 5-21
el_app_obj_name 5-9, 5-11
utl_complete_mom_msg_time 8-27
utl_help_dir 8-47
yourIntf_access_cfg_file_name 5-9,

5-11
yourIntf_trig_variables 6-10

version method, elLinkClass 7-29

W

Windows NT/Intel, binaries 2-3
write method 1-15, 1-25

developing 3-29
elCommClass 7-19
elFIFOSpoolerClass 7-24
elRASpoolerClass 7-33

writeNameSpace method 7-45

X

X11
functions 2-8
include files 2-6
libraries 2-7

Y

yourIntf_access_cfg_file_name 5-9,
5-11
Index-7

Index
yourIntf_trig_variables 6-10
yourIntfAccessApplyHan 5-19
yourIntfAccessAppObjNameVHan

5-21
yourIntfAccessCfgLoad 5-9
yourIntfAccessCfgPrint 5-13
yourIntfAccessCfgReset 5-8
yourIntfAccessCfgSave 5-11
yourIntfAccessGui 5-15
yourIntfClass 7-36

abortNameSpaceLoad method 7-37
communication class 7-36
consumeOptions method 7-37
getChildren method 7-9, 7-38
list2path method 7-38
loadNameSpace method 7-39
open method 7-40
options method 7-41
path2list method 7-41
selectionProcedures method 7-42
supports method 7-43
usage method 7-44

yourIntfCompletionList 8-83
yourIntfTrigApplyHan 6-22
yourIntfTrigCfgPrint 6-11
yourIntfTrigCfgReset 6-10
yourIntfTrigCreatePanel 6-14
yourIntfTrigEscapeKHan 6-20
yourIntfTrigGetFocus 6-13
yourIntfTrigIsEnabled 6-19
yourIntfTrigPackPanel 6-17
yourIntfTrigSync 6-24
Index-8

About this Edition

March 2000: Fifth Edition. Revised to describe Enterprise Link Edition

E.02.30 for Windows NT 4.0. For details about what is new in this release,

refer to the Enterprise Link E.02.30 Release Notes.

November 1999: Fourth Edition. Revised to describe Enterprise Link Edition

E.02.20 for HP-UX 10.20 and Windows NT 4.0. (Documentation released in

only PDF and HTML versions.)

December 1997: Third Edition. Revised to describe Enterprise Link version

E.02.00.

April 1997: Second Edition. Revised to describe Enterprise Link 1.10 for

HP-UX 10.20 and for Windows NT 4.0.

July 1996: First Edition.

Need Assistance?

Customer Support

If you need technical assistance, refer to your Enterprise Link support

contract. Your Enterprise Link support contract provides the telephone

number for contacting the appropriate Agilent Tecnologies customer

response center.

Enterprise Link support is provided as per your support contract. See your

Enterprise Link support contract for details.

When contacting Agilent Technolgies, please have the following information

available:

• your name

• your company’s name

• your phone and fax numbers

• your system’s configuration, including:

• the version of Enterprise Link you are using and any options that are

in use

• the name and version number of your operating system

• the manufacturer and model of your computer

• your system’s hard disk size

• the amount of memory installed on your system

• errors reported by the system

• a description of the problem, including the steps that lead to the problem

Enterprise Link on the Internet

Visit the Automation Integration Software web site for more Enterprise Link

information. Visit the web site at http://www.agilent.com/find/ais

	Enterprise Link User's Guide
	Contents
	Concepts
	Configuration Tool Overview
	Data Server Overview
	Configuration Tool/Data Server Interface
	Tcl/C API Interface
	Tcl Communication Class Concepts

	Building a Tcl�Interpreter
	Building a Tcl Interpreter on HP-UX Systems
	Building a Tcl Interpreter on Windows NT™ Systems
	The Build Script

	Developing the Data Server Communication Object
	Developing the supports Method
	Developing the selectionProcedures Method
	Developing the constructor Method
	Developing the destructor Method
	Developing the list2path Method
	Developing the path2list Method
	Developing the options Method
	Developing the consumeOptions Method
	Developing the usage Method
	Developing the open Method
	Developing the setTrigger and run Methods
	Developing the getChildren Method
	Developing the read Method
	Developing the write Method
	Developing the commit Method
	Developing the rollBack Method
	Developing the Object_getSpoolPaths Procedure

	Developing the Configuration Tool Communication Object
	Developing the Interface Object
	Developing the supports Method
	Developing the list2path Method
	Developing the path2list Method
	Developing the options Method
	Developing the consumeOptions Method
	Developing the usage Method
	Developing the open Method
	Developing the loadNameSpace Method
	Developing the abortNameSpaceLoad Method
	Developing the getChildren Method
	Developing the selectionProcedures Method
	Creating a Message Catalog File

	Developing an Access Window
	Developing the yourIntfAccessCfgReset Procedure
	Developing the yourIntfAccessCfgLoad Procedure
	Developing the yourIntfAccessCfgSave Procedure
	Developing the yourIntfAccessCfgPrint Procedure
	Developing the yourIntfAccessGui Procedure
	Developing the yourIntfAccessApplyHan Procedure
	Developing the yourIntfAccessAppObj- NameVHan Procedure

	Developing a Trigger Panel
	Developing the yourIntfTrigCfgReset Procedure
	Developing the yourIntfTrigCfgPrint Procedure
	Developing the yourIntfTrigGetFocus Procedure
	Developing the yourIntfTrigCreatePanel Procedure
	Developing the yourIntfTrigPackPanel Procedure
	Developing the yourIntfTrigIsEnabled Procedure
	Developing the yourIntfTrigEscapeKHan Procedure
	Developing the yourIntfTrigApplyHan Procedure
	Developing the yourIntfTrigSync Procedure

	Class Reference
	Return Values
	elCommClass
	elFIFOSpoolerClass
	elLinkClass
	elRASpoolerClass
	elSpoolerClass
	yourIntfClass

	Utility Reference
	Index

